Grupo de Pesquisa

NOVOS MATERIAIS SENSORES DE RADIAÇÃO

Coordenador

Luiz O. Faria - CDTN

Serviço de Nanotecnologia e Materiais Nucleares

Materiais Termoluminescentes

Medidor Multipropósito

Medida de CSR

			<u> </u>
	HVL (mmAl)		
	40 kV	70 kV	100 kV
Ionization Chamber	1.41	2.58	3.91
Multipurpose Instrument	1.31	2.64	3.58
Difference (%)	7.1	-2.3	8.4

Medida de HVL

Materiais e Compósitos Poliméricos

PBAT - poly(butylene adipate-co-terephthalate)

Novo Polímero Fotoluminescente Dosimetria Gama

Nanocompósitos Poliméricos Blindagens de Raios-X Universidade Federal de Minas Gerais - UFMG Programa de Pós-Graduação em Ciências e Técnicas Nucleares

Desenvolvimento de Compósitos Poliméricos com Metais Atenuadores e Estudo da Eficiência de Atenuação da Radiação para Aplicação em Procedimentos Radiológicos

Aluna: Críssia Carem Paiva Fontainha

Orientador: Dr. Luiz Oliveira de Faria

Método de síntese

Métodos de Análise

Qualidade da Imagem

Atenuação: Feixe monoenergético

Atenuação: Feixe Polienergético

Compósitos Sintetizados

Figura 1: Compósitos de matriz polimérica PVDF preenchidos com 8%Bi2O3/MMA micro (*a*) e nano (*b*), e com 8%ZrO2:Y2O3 (*c*), e compósitos de matriz P(VDF-TrFE) preenchidos com 8%Bi2O3/MMA micro (*d*) e nano (*e*), e com 8% ZrO2:Y2O3 (*f*).

Figura 2: P(VDF-TrFE):ZrO2 analisados em fotografias, sintetizado sem MMA (*a*) e sintetizado com nanopartículas funcionalizadas de zircônia (*b*), e suas micrografias (*c*) e (*d*) respectivas.

FT-IR: Estudo do MMA

Figura 3: FTIR dos nanocompósitos P (VDF-TrFE)/ZrO₂/MMA (direita) e do MMA puro do NIST (esquerda). A banda a 1700 cm⁻¹ refere-se ao alongamento C=O da zircônia. A banda 1641 cm⁻¹ pode também ser atribuída a um enfraquecimento da ligação C = O, que por sua vez pode estar compartilhando a carga eletrônica com a cadeia do copolímero. As bandas na região de 1645 e 1555 cm⁻¹ pode ser atribuída ao estiramento das ligações C=O em MMA. A banda de forte absorção da C=O do MMA observada a 1750 cm⁻¹ no NIST reforça a ideia de que parte da carga eletrônica do vínculo C=O está sendo compartilhada com as cadeias de copolímero P(VDF-TrFE), perdendo a sua intensidade.

DRX: Estudo da fase cristalina

Figura 4: DRX do pó comparando com o compósito P(VDF-TrFe):Bi₂O₃/MMA microparticulado.

Ao contrário do compósito, o pó havia fase cristalina, pode ser resultado da síntese.

DSC: Estudo da cristalinidade

Figura 5: DSC P(VDF-TrFE)ZrO₂:Y₂O₃ comparando com o compósito do bismuto nano e copolímero. Menor cristalinidade do compósito de zircônia (21,44 J.g⁻¹), que do bismuto nano (25,44 J.g⁻¹). Copolímero apresenta maior cristalinidade (26,59 J.g⁻¹) como esperado.

UV-VIS: Análise da concentração

na

do

0

na

Figura 6: Espectro de absorção do UV-Vis para matriz polimérica P(VDF-TrFE) e o nanocompósito dopado com 1, 2, 3, 5 e 10% de ZrO₂/MMA.

MEV/EDS: Estudo de porosidade

Figura 7: MEV/EDS do nanocompósito P(VDF-TrFE):8%Bi₂O₃/MWCNT sem e com adição do ácido metacrílico (MMA) no processo de síntese.

> O MMA favoreceu a porosidade na matriz.

Figura 8: MEV/EDS do microcompósito P(VDF-TrFE):8%Bi₂O₃/MMA.

> O micro apresentou maior porosidade na matriz que o nano.

Qualidade da Imagem

Figura 9: Filmes radiocrômicos após irradiação com o objeto de teste de resolução sem compósito atenuador *(a)* e com os compósitos P(VDF-TrFE)/ 8%ZrO2:Y2O3 – MMA *(b)*, P(VDF-TrFE): 8%Bi2O3 – MMA nano *(c)*, e após o copolímero puro *(d)* e suas respectivas imagens do canal da componente vermelho em *(e)*, *(f)* e *(g)*e *(h)*.

Tabela 1 – Resultados das análises da imagem do filme radiocrômico

Filmes radiocrômicos	Red net color medido	RSR
Referência	64,88	71,16
Após P(VDF-TrFe):8%Bi ₂ O ₃ -MMA nano	64,97	91,26
Após P(VDF-TrFe)/8%ZrO ₂ :Y ₂ O ₃ -MMA	65,35	88,83

Atenuação: Raios X Polienergético

Figura 10: Atenuação dos compósitos, funcionalizados com MMA, para o padrão das qualidades de radiação RQR2 (N40/33 keV), RQR5 (N70/54 keV) e RQR8 (N100/83 keV).

Atenuação: Raios X Polienergético

Figura 11: Curva comparativa dos coeficientes de atenuação dos compósitos P(VDF-TrFe):8%Bi2O3/MMA com o bismuto da tabela NIST (2015) em relação à energia do feixe.

Atenuação: Raios X Monoenergético

Figura 12: Percentual de atenuação do P(VDF-TrFE):8%Bi2O3 micro e nano, e do copolímero, em função das energias dos alvos Co-60 (6,5 keV), Mo-42 (17,5 keV) e Ag-47 (22,1 keV).

Obrigada!

crissia@gmail.com

farialo@cdtn.br