

Segunda Semana de Engenharia Nuclear e Ciências das Radiações - SENCIR 2014 Belo Horizonte, MG, Brasil, 07 a 09 de Outubro de 2014

Escola de Engenharia, Universidade Federal de Minas Gerais

Pós-graduação em Ciências e Técnicas Nucleares Departamento de Eng. Nuclear

CENTRO DE DESENVOLVIMENTO DA TECNOLOGIA NUCLEAR

IDENTIFICAÇÃO DO POTENCIAL DE DESENVOLVIMENTO DE COR EM QUARTZO NATURAL INCOLOR POR MEIO DA ESPECTROMETRIA RAMAN

Danielle G. Alkmim¹ e Fernando S. Lameiras²

Centro de Desenvolvimento da Tecnologia Nuclear - CDTN, Comissão Nacional de Energia Nuclear - CNEN, Avenida Presidente Antônio Carlos, 6627, Campus da UFMG 31270-901 Belo Horizonte, MG

alkmia@yahoo.com.br1, fsl@cdtn.br2

INTRODUCÃO

O quartzo incolor é normalmente exposto à radiação ionizante (raios gama ou feixe de elétrons de alta energia) a fim de adquirir diferentes cores para a indústria das jóias. A formação da cor é devido à presença de vestígios de alguns elementos, tais como alumínio, ferro, hidrogênio, lítio e sódio. O tratamento térmico e a exposição à radiação ultravioleta são técnicas complementares à irradiação que visam otimizar a cor adquirida. (Fig.1)

Fig. 1 – Esquema de cores desenvolvidas pelo quartzo incolor após sua exposição à radiação ionizante. (As setas azuis indicam a irradiação ionizante da gema

А

Ouartzo bruto colorido

grande

demanda

mercado têm provocado uma

exaustão de pedras coradas

nas jazidas. Hoje, a maior

parte dos cristais de quartzo

são extraídos incolores da

natureza, sendo necessário separar aqueles que podem

desenvolver cores daqueles

que não podem. A assinatura

FTIR do espectro na região de

3000 a 4000 cm⁻¹ permite

esta distinção1 (Fig. 2).

do

A irradiação da gema tem a finalidade de agregar valor ao produto:

Ouartzo bruto incolor

antes de ser exposto à radiação ionizante.

OBJETIVO

Sendo assim, o objetivo deste estudo é investigar a utilização da espectroscopia Raman como um possível substituto para a espectroscopia na região do infravermelho na avaliação do potencial de desenvolvimento de cor do quartzo incolor.

MATERIAIS E MÉTODOS

- Onze amostras de quartzo natural, incolor e com potencial de desenvolvimento de cor conhecidos, foram selecionadas e nomeadas de A a K, sendo duas amostras completamente incolores usadas como referência, chamadas de P01 e P02.
- Usou-se a espectroscopia na região do infravermelho FTIR para separar as amostras em quatro grupos segundo seu potencial de desenvolvimento de cor ao serem irradiadas: grupo das ametistas (violeta), prasiolitas (verde), greengolds (amarelo e marrom) e incolores (que continuam incolor após a irradiação).
- Após essa classificação, obteve-se o deslocamento Raman de cada amostra. Os espectros foram analisados buscando similaridades que pudessem identificar a que grupo pertence cada quartzo incolor, segundo seu potencial de desenvolvimento de cor. (Fig. 2, 3 e 4)

MODALIDADE MESTRADO

- Foram obtidos os espectros Raman de todas as amostras na região de 400 a 1500 cm⁻¹.
 - CONDIÇÕES DE ANÁLISES: Microscópio Raman Renishaw System 300 do CETEC (Fundação Centro Tecnológico de Minas Gerais) com excitação das amostras em 785 nm, laser a 5%, contagem de 60.000 e tempo de aquisição de 10 s.
- A amostra K foi selecionada para investigar os deslocamentos Raman na região 3000 a 4000 cm⁻¹ por ser a amostra que possui maior intensidade de sinais nessa região. (Fig. 4)
 - NOVAS CONDIÇÕES DE ANALISES: laser 514 nm com potência mais alta em amostra polida, grade com menor número de linhas, modo "single"- uma janela , maior tempo de aquisição e maior número de acumulações.

• Na região de 400 a 1500 cm⁻¹ foram encontrados deslocamentos Raman relacionados à rede cristalina do quartzo e sua composição essencial, SiO_2 , já descritos na literatura. Não há diferenças espectrais que permitam identificar o potencial de desenvolvimento de cor da amostra nessa região.

Fig. 5 – Principais deslocamentos Raman encontrados em uma amostra de quartzo incolor (nesse caso, um greengold em potencial)

 Na região de 3000 a 4000 cm⁻¹ foram encontrados baixos sinais de impurezas, geralmente confundidas com ruídos. Os melhores resultados foram obtidos com a prasiolita K. (Fig. 6 e 7)

Fig. 6 - Comparação entre os espectros Raman e Fig. 7 - Comparação entre os Infravermelho da amostra K. espectros Raman da amostra K e P01

CONCLUSÕES

Foi possível identificar sinais de deslocamento Raman em algumas prasiolitas na região de 3000-4000cm-1, faixa cuja assinatura FTIR torna possível a previsão do potencial de desenvolvimento de cor do quartzo. A banda em (3595,7±3,4) cm-1, comum em ametistas e prasiolitas, foi também identificada em espectro Raman com incidência de laser de alta potência no eixo c de uma prasiolita, não se manifestando no eixo b. Com a tecnologia atualmente disponível, a espectroscopia Raman ainda é pouco sensível às impurezas cromóforas do quartzo incolor que podem ser ativadas por radiação ionizante. A espectroscopia na região do infravermelho ainda é mais proveitosa para esse fim.

