

Rochkhudson B. de Faria^{1,} Fabiana B. A. Monteiro^{1,} Felipe Torres^{1,} e Claubia Pereira^{1,2}

¹ Departamento de Engenharia Nuclear - Universidade Federal de Minas Gerais ² Instituto Nacional de Ciência e Tecnologia de Reatores Nucleares Inovadores/CNPq rochkhudson@ufmg.br, fabianabeghini@yahoo.com.br, fstorres301@gmail.com e claubia@nuclear.ufmg.br Mestrado/Doutorado

EMU

Neste trabalho foi analisado o comportamento do fator de multiplicação infinito (k_{inf}) em um elemento combustível tipo 17 x 17 de um reator PWR. O combustível foi enriquecido a 4,0% e foram estudados o elemento combustível sem veneno queimável, com 2,0% e 5,0% de veneno queimável [1], distribuídos em 08, 12, 16 e 20 barras.

O estudo mostrou que no início do ciclo houve uma redução na criticalidade em relação ao elemento combustível sem barras de veneno queimável, o que indica uma boa possibilidade da redução das barras de controle no início do ciclo.

Tabela 1. Parâmetros utilizados na modeladem do EC do PWR [2]				
Comprimento da barra de combustível ou	365,7 cm			
tubo guia				
Raio do combustível	0,412660 cm			
Raio do revestimento do combustível	0,474364 cm			
Raio do refrigerante dentro do tubo guia	0,572940 cm			

		Fator de Multiplicação Infinito x Queima - [U235(4%) Gd-5%]
	1,50	
	1,40	
	1,30	
	1,20	
-	1,10	
	1 00	

Objetivo:

- Analisar e comparar o k_{inf} nas diferentes composições e quantidades de veneno queimável;

2. Metodologia

A modelagem do elemento combustível de um PWR baseado em [2], é um arranjo de 17 x 17, com um tubo guia central e 24 tubos guias, todos completamente cheios de água e com 456 ppm de boro diluído, barras de UO₂ com U-235 enriquecido a 4,0%. Em seguida foi analisado o comportamento do elemento combustível sem a adição do veneno solúvel e com a utilização 08, 12, 16 e 20 barras de veneno queimável com 2,0% e 5,0% de gadolinio.

Para tanto, foi utilizado o sistema de códigos SCALE 6.0, através dos módulos de controle CSAS e TRITON 6.0 [3, 4, 5, 6], e o elemento combustível foi submetido a uma queima de 33,0 GWd/MTU e 60,0 GWd/MTU respectivamente.

2.1.Modelo Geométrico

A Figura 1 mostra a geometria da célula do combustível e do tubo guia. A Figura 2 mostra as pastilhas de combustível, o esqueleto do elemento combustível e o elemento combustível.. A Figura 3 mostra o elemento combustível com 24 tubos guias e 01 tubo guia central. A Figura 4, mostra o elemento combustível com 08, 12, 16 e 20 barras de veneno queimável.

Raio do tubo guia	0,613010 cm
Passo do Reticulado Varetas (p)	1,265 cm
Passo do Reticulado Elemento Combustível	21,505 cm
Temperatura do Combustível	873 K
Temperatura do Revestimento	673 K
Temperatura do Refrigerante	573 K
Potência	38 W/gU

2.2. Simulações

Quando o elemento combustível foi modelado através do módulo CSAS os materiais e composições são as descritas na referência [2], e foram utilizadas as bibliotecas contínua, além das bibliotecas v5-44, v5-238 e v7-238 [8].

Quando a modelagem foi através do módulo TRITON, retirouse o veneno solúvel a fim de verificar a eficiência do gadolínio utilizados na proporção de 2,0% e 5,0% distribuídos em 08, 12, 16 e 20 barras de veneno queimável utilizando a biblioteca v5-44, mantendo as demais composições descritas no benchmark.

3. Resultados

3.1. Cálculos de Criticalidade

A Tabela 2 mostra os valores do benchmark [8] e os nossos resultados do k_{inf}. Observa-se que os resultados deste estudo com as diferentes bibliotecas, estão dentro do intervalo dos valores obtidos pelos outros institutos. As Figuras 5, 6 mostram o k_{inf} ao longo da queima de 60,0 GWd/MTU, onde se observa a direta interferência do veneno queimável no início do ciclo.

Fig.6. Fator de multiplicação infinito ao longo da queima de 60,0 GWd/MTU (EC-WBPR, EC-8, EC-12, EC-16, EC-20)

A Figura 7 mostra a comparação do k_{inf} do elemento combustível contendo 2,0% e 5,0% de gadolínio ao longo da queima de 60,0 GWd/MTU.

Fator de Multiplicação Infinito x Queima [U-235(4%) Gd2%-Gd5%]

Fig.1. Geometria da célula do combustível e geometria da célula do tubo guia sem barras de controle [2].

Fig.2. Pastilhas, esqueleto do elemento combustível, elemento combustível [7].

Fig.3 Elemento combustível [2].

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 3 1 1 1 1 1 1 1 1 3 1 1 1	
1 1 1 1 1 3 1 1 3 1 1 3 1 1 1 1 1 1	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 4 1 1 3 1 1 3 1 1 3 1 1 4 1 1	1 1 4 1 1 3 1 1 3 1 1 3 1 1 4 1 1
1 1 1 3 1 1 1 1 1 1 1 1 1 3 1 1 1	1 1 1 3 1 1 1 4 1 4 1 1 1 3 1 1 1
1 1 1 1 1 1 1 4 1 1 4 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1	1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1
1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 4 1 1 4 1 1 1 1 1 1 1 1 1 1
	1 1 1 4 1 1 1 1 1 1 1 1 1 1 4 1 1 1
	1 1 3 1 1 3 1 1 2 1 1 3 1 1 3 1 1
1 1 4 1 1 3 1 1 3 1 1 3 1 1 4 1 1	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Combustivel - UO2
1 1 1 3 1 1 1 4 1 4 1 1 3 1 1 1	
1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1	Tubo Guia Central
	ruoo oula ochital
1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1	
	Tubo Guia cam harras da controla
1 1 1 1 1 1 4 1 1 1 4 1 1 1 1 1 1 1 1 5	rubo Guia sem barras de controle
1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1	
1 1 1 1 4 1 1 1 1 1 1 4 1 1 1 1	
1 1 1 3 1 1 1 4 1 4 1 1 1 3 1 1 1	Combustivel com veneno
1 1 4 1 1 3 1 1 3 1 1 3 1 1 4 1 1	
1111111111111111111	queimavel $UO_2 + Gd2O_3$
	2.2.3

Tabela 2. Comparações do k_{inf} no módulo do CSAS6 para diferentes bibliotecas e diferentes códigos.

Países	Intituto/Dep.	Código	Bibliotecas	k _{inf}	Desvio código (σ)
França	CEA	CRISTAL 1.0	-	1.34025	-
Reino Unido	BNFL	MONK8B	-	1.34180	-
Finlândia	VTT	MCNP4C	-	1.33966	-
Reino Unido	SERCO	MONK8B	-	1.34110	-
	JNES	MVP2.0	-	1.33913	-
Japão	JAERI JENDL 3.3	MVP	-	1.33989	-
	JAERI JENDL 3.2	MVP	-	1.34349	-
Alemanha	AREVA(Framatone ANP)	KENO V.a	-	1.34025	-
	ORNL	HELIOS	-	1.33797	-
FΠ		SAS2h	-	1.33797	-
LUA		TRITON-KENO V.a	-	1.33797	-
		TRITON-NEWT V.a	-	1.33797	-
Suécia	PSI	MCNPX-2.4.0	-	1.34070	-
	DEN-UFMG CSAS6	CSAS6	ENDF/B-VI.8	1.33650	0.00068
			ENDF/B-VII.0	1.34202	0.00059
Brasil			44 grupos (V5-44) ¹	1.33123	0.00051
			238 grupos(V5-238) ²	1.33100	0.00052
			238 grupos(V7-238) ²	1.33584	0.00055
	Médi	1.33986			
	Desvio padr	0.00169			
	Desvio padrão re	0.13%			
	Méd	1.33860	-		
	Desvio pa	0.00335	-		
	Desvio padrão	0.25%	_		

Fig.7. Comparação dos valores do fator de multiplicação infinito dos elementos combustíveis com 2,0% e 5,0% de veneno queimável.

4. Conclusões

Conforme esperado o elemento combustível sem barras de veneno queimável apresenta o maior k_{inf} no início da queima e o elemento combustível com 20 barras de veneno queimável e 5,0% de gadolínio, possui o menor valor, mostrando, assim, a eficácia de sua atuação sobretudo no início do ciclo, momento em que é necessário o excesso de reatividade capaz de garantir a criticalidade do núcleo ao longo de sua operação. Este fato é importante, porque proporciona a redução das barras de controle, favorecendo a diminuição de actinídeos e produtos de fissão, entretanto é necessário que outros estudos sejam realizados de forma assegurar a otimização na utilização de venenos queimáveis e solúveis.

5. Agradecimentos

Os autores são gratos às agencias de fomento CNPq, CNEN, CAPES e FAPEMIG, pelo suporte.

6. Referências

- 1. SCHLIECK, M.; BORGER, H. –D.; NEUFERT, A., Optimized gadolinia concepts for advanced in core fuel management in PWRs. Nuclear Engineering Designs 205, 191-198, (2001).

Fig.4 Elemento combustível com 0, 08, 12, 16 e 20 barras de veneno queimável.

¹colapsada de ENDF/B-V colapsada de ENDF/B-VII.8

Fig.5. Fator de multiplicação infinito ao longo da queima de 60,0 GWd/MTU (EC-WBPR, EC-8, EC-12, EC-16, EC-20)

- 2. OECD, ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT. Burn-up Credit Criticality Benchmark - Phase II-D - PWR-UO2 Assembly Study of Control Rod Effects on Spent Fuel Composition, NEA Nº 6227, ISBN: 92-64-02316-X, France, 2006.
- 3. S. M. Bowman, KENO-VI Primer: A Primer for criticality calculations with SCALE/KENO-VI using GeeWiz. Oak Ridge Tennessee, USA: ORNL/TM-2008/069 (2008).
- 4. S. Goluoglu, D. F. Hollenbach, L. M. Petrie, CSAS6: Control Module of enhanced criticality safety analysis with Keno-VI. Oak Ridge Tennessee, USA: ORNL/TM-2005/39, version 6, vol. I, sect. C6 (2009).
- 5. S. M. Bowman, M. E. Dunn, SCALE Cross-section Libraries, Oak Ridge, Tennessee, USA: ORNL/TM-2005/39, Version 6, Vol. III, Sect. M4 (2009).
- 6. M. D. Dehart. TRITON: A Two-dimensional Transport and Depletion Module for Characterization of Spent Nuclear Fuel. Oak Ridge, Tennessee, USA : ORNL/TM-2005/39, Version 6, Vol. I, Sect. T1 (2009).
- 7. http://www.inb.gov.br/pt-br/WebForms/Interna2.aspx?secao_id=58 (2013)
- 8. S. M. Bowman, M. E. Dunn, SCALE Cross-section Libraries, Oak Ridge, Tennessee, USA: ORNL/TM-2005/39, Version 6, Vol. III, Sect. M4 (2009).
- 9. ASOU, MARIELLE.; PORTA, JACQUES., Prospect for poisoning reactor cores of the future, Nuclear Engineering and Design, 168 (1997) 261-270.
- 10. SECKER, JEFFREY R.; BROWN, JEFFREY A., Westinghouse PWR Burnable Absorber Evolution and Usage. ANS Winter Meeting, American Nuclear Society (2010).
- 11. WAGNER, JOHN C.; SANDERS, CHARLOTTA E., Investigation of the Effect of Fixed Absorbers on the Reactivity of PWR Spent Nuclear Fuel for Burn up Credit, Nuclear Technology, vol. 139, ORNL, Oak Ridge, Tennessee, 2002.