

Id.: CR65

MONTAGEM DE UM PROTÓTIPO DE UM FANTOMA TIPO JASZCZAK PARA CONTROLE DE QUALIDADE DE IMAGEM EM PET

Ana B. C. Andrade. ¹; Bruno M. Mendes. ¹

¹Centro de Desenvolvimento da Tecnologia Nuclear, CDTN, 31270-901 Belo Horizonte, MG, Brasil. <u>ana.andrade@cdtn.br</u>; <u>bmm@cdtn.br</u>

Palavras-Chave: PET/CT; Controle de qualidade; impressão 3D; Phantom; Manufatura aditiva.

RESUMO

A Tomografia por Emissão de Pósitrons (PET) é uma modalidade funcional de imagem que utiliza de radiofármacos para a avaliação variações metabólicas e biológicas do corpo humano, possibilitando diagnósticos precoces. O PET clínico é acoplado a outras técnicas de imagem como CT ou RM para melhor acurácia da imagem e para obtenção do mapa de atenuação. Para o seu devido funcionamento e averiguação da qualidade de imagem do tomógrafo, é necessário a realização de controle de qualidade periódicos de acordo com parâmetros internacionais e nacionais. Para a realização desses controles, são utilizados protocolos, normas, algoritmos, e fantomas altamente específicos. Tais simuladores normalmente são caros e não apresentam a possibilidade de customização. O objetivo desse estudo foi desenvolver um simulador de baixo custo e customizável, análogo ao fantoma Jaszczak, a ser fabricado pela impressora 3D para a avaliação de resolução espacial e do contraste de tomógrafos PET. O fantoma Jaszczak foi usado como referência para produção do protótipo com hastes de diâmetros: 3mm; 5mm; 6,5mm; 8mm; 9,5mm; 11mm, e altura de 10 mm. As hastes são vazadas, com todas as localizações calculadas de acordo com o seu diâmetro. Foi utilizado o software de modelagem Freecad® versão 0.20 para a construção da parte interna do simulador. Para a impressão do protótipo, foram utilizados o filamento PLA e a impressora do modelo Creality Ender 5 Plus. Após o processo de impressão, o modelo foi preenchido com dois tipos de resina epóxi, uma de média e outra de alta viscosidade. Imagens de CT foram realizadas para verificação da integridade do protótipo, homogeneidade da resina e análise do HU (Hounsfield Unit) obtido para os materiais utilizados. As imagens realizadas após o processo de cura das resinas apresentaram alguns problemas como empenamento dos tubos e falhas de preenchimento da resina, o que demonstra a necessidade de aprimoramentos no processo de produção. A investigação do HU das resinas demonstrou que a de alta viscosidade apresentou 43 ± 5 HU, e a de média viscosidade variou entre 71 ± 12 e 99 ± 7 HU. Em comparação com o PMMA (~120 HU), esses valores são mais próximos aos valores esperados para tecidos moles como músculo (+10 a +40); fígado (+40 a +60); e cérebro (+20 a +45).

1. INTRODUÇÃO

A Tomografia por Emissão de Pósitrons (PET) é uma modalidade de imagem que permite a visualização e quantificação de possíveis alterações metabólicas e biológicas do corpo humano, no âmbito clínico. Geralmente, essas alterações fisiológicas, precedem as alterações anatômicas em uma ampla gama de patologias. Dessa forma, diagnósticos precoces e precisos podem ser obtidos pela Técnica de PET, o que a torna vantajosa em relação a outras modalidades de imagem. Porém, para que a técnica possua uma localização anatômica eficiente, outras técnicas de imagem, como a CT, são acopladas a imagens PET. Como resultado são obtidas imagens altamente específicas, com alto nível de detalhe anatômico e funcional [1]. Atualmente, o PET/CT tem diversas aplicações, dentre as quais destacam-se o diagnóstico, o estadiamento e a monitoração da eficácia de tratamentos de patologias neoplásicas [2].

O scanner PET de uso clínico, possui um sistema de detectores com um anel de cintiladores inorgânicos, com FOV axial entre 15 cm e 18 cm; tubos fotomultiplicadores ou fotodiodos de avalanche; um sistema eletrônico de transmissão de dados e reconstrução de imagens, além de algoritmos de reconstrução [3,4]. Para que todo esse sistema, hardware e software, funcione

dentro dos limites estabelecidos de acordo com as normas vigentes nacionalmente (CNEN 3.05 [5]) e intencionalmente (IAEA [6]), são realizados, necessariamente, controles de qualidade periodicamente [5, 6, 7, 8]. Objetos simuladores altamente específicos, são requeridos para a realização desses controles de qualidade, sendo utilizados para simular órgãos ou partes especificas ou todo o corpo humano. Dessa forma, permitem a avaliação de resolução espacial, contraste e outros parâmetros relacionados à qualidade da imagem [9]. Esses fantomas possuem dimensões definidas de acordo com as normas especificas como a NEMA NU 2 (2007) [10] e não são produzidos no Brasil. O custo de aquisição desses modelos físicos no mercado nacional é elevado. Outros simuladores, como o Jaszczak (Fig.1), recomendado pela ACR, também podem ser utilizados para a realização de alguns desses controles de qualidade, como a avaliação de contraste, da uniformidade e da resolução espacial de equipamentos de PET e SPÈCT [11].

Fig. 1- Fantoma Jaszczak.

Fonte:[12]

O alto custo, a baixa disponibilidade de fornecedores e a impossibilidade de customização, entre outros fatores, de fantomas impulsionaram o emprego da manufatura aditiva (MAd), também denominada impressão 3D, para a fabricação de fantomas, tanto para a aplicação clínica, quanto para a pesquisa médica [13]. Essa técnica oferece mais flexibilidade para a produção desses simuladores, levando em consideração as especificidades do equipamento e os objetivos requeridos. Possui aplicabilidade em diversas áreas como PET, SPECT e CT. Além disso, a produção de simuladores físicos por MAd pode resultar em modelos com custos sensivelmente inferiores aos comerciais [13].

Este trabalho é parte do desenvolvimento de um objeto simulador de baixo custo, análogo ao Jaszczak, a ser impresso em 3D para avaliação da resolução espacial o do contraste de tomógrafos PET. O modelo será preparado em software CAD e impresso em 3D usando a técnica FDM (*fused deposition modeling*). Neste estudo, uma peça para estudo da resolução espacial em lesões frias será modelada e impressa em 3D.

2. METODOLOGIA

O fantoma Jaszczak foi utilizado como referência para a construção do protótipo. Algumas mudanças como a diminuição dos diâmetros das hastes e a possibilidade de avaliação de lesões quentes (com hastes vazadas e espaço interno preenchido) em vez de lesões frias, dentre outras. As principais diferenças entre o protótipo e o fantoma Jaszczak estão propostos na tab.1

Parâmetro	Fantoma Jaszczak	Protótipo deste trabalho	
Diâmetro hastes (em mm)	4,8; 6,4; 7,9; 9,5; 11,1 ; e 12,7	3; 5; 6,5; 8; 9,5; 11	
Altura hastes	~9mm	10mm	
Número total de hastes	148	209	
Tipo de haste	Maciça	Vazada	
Espessura do disco que segura as hastes	~2mm	3mm	
Raio do disco que segura as hastes	104,5mm	105mm	

Tab. 1-Comparativo Entre O Modelo Proposto E O Vendido Comercialmente.

Fonte:	Arquivo	da	Autora

O posicionamento de cada haste de um conjunto de hastes de determinado diâmetro foi estabelecido por meio de coordenadas em um plano nos eixos X e Y para modelagem no software $FreeCAD^{(0)}$. A análise de imagens do fantoma Jaszczak demonstrou que cada haste de um conjunto era disposta em um dos vértices de um triângulo equilátero. O lado do triângulo tinha como dimensão o dobro do diâmetro (2 ϕ) da haste e cada haste está afastada de outra com uma distância mínima de um diâmetro (1 ϕ) da haste.

Um sistema com equações simples foi desenvolvido para determinar as coordenadas de cada ponto onde será posicionado o centro de uma haste no plano XY. Nas linhas ímpares, para determinar a coordenada no eixo X de um ponto, $P(x_i, y_j)$, foi utilizada a equação 1. Já para as linhas pares, as coordenadas do ponto P no eixo X foram calculadas de acordo com a equação 2.

$$x_i = i.(2D)$$
 equação (1)

$$x_i = [i.(2D)] + D \qquad \text{equação} (2)$$

onde x_i , é a coordenada do ponto P no eixo X; i é o i-ésimo ponto a ser determinado para o posicionamento de uma haste em uma determinada linha; e D é o diâmetro da haste escolhido para o conjunto. O cálculo da coordenada de cada ponto P no eixo Y foi utilizado a equação 9, que determina a altura do triângulo equilátero determinado por três hastes.

$$y_j = [j.(2D)] \cdot sen \frac{\pi}{3}$$
 equação (3)

onde, y_i , é a coordenada do ponto P no eixo Y; j é o j-ésimo ponto a ser determinado para o posicionamento de uma haste em uma determinada linha; e D é o diâmetro da haste escolhido para o conjunto.

Conforme pode ser observado na Fig.2, os pontos gerados fora do triângulo equilátero foram desprezados para que cada conjunto de hastes tenha uma forma triangular e possa ser alocado em um dos seis segmentos do cilindro que formam o modelo apresentado na Fig. 3.

Fig. 2- Representação de quatro linhas de pontos gerados de acordo com as equações de posicionamento dos pontos centrais de hastes com 3 mm de diâmetro.

Fonte: Arquivo da Autora

Fig. 3- Representação demonstrando os seis segmentos com conjuntes de hastes cilíndricas que constituirão o modelo.

Fonte: Arquivo da Autora

Após a modelagem no *FreeCAD* as peças foram fatiadas usando o software da impressora 3D *Creality 5 plus*. O filamento utilizado para impressão foi o PLA, um polímero biodegradável de ácido polilático, fabricado pela 3D Lab. indústria Ltda. Este filamento possui baixa temperatura de fusão, fácil adesão a mesa, menor probabilidade de deformação e bom acabamento superficial. Os parâmetros de impressão estão apresentados na tab.2.

Tab 2. Parâmetros de impressão utilizados na produção do primeiro protótipo.

Parâmetros	Valores	
Qualidade (altura da camada)	0,2 mm	
Invólucro	1,6 mm	
Enchimento	100 %	
Temperatura do bico da extrusora	220°	
Temperatura da mesa	55°	

Aderência	Raft	
Diâmetro do bico da extrusora	0,04mm	
Diâmetro do filamento	1,75 mm	
Velocidade da impressão	80 mm.s ⁻¹	

Fonte: Arquivo da Autora

Imagens de CT da peça, que foram realizadas após o tempo de cura das resinas, foram utilizadas para a verificação da homogeneidade da resina, da presença de bolhas e de fissuras e para determinar as variações de contraste na imagem de acordo com os diferentes tipos de materiais utilizados na sua fabricação. Os parâmetros para aquisição da imagem estão descritos na tab.3.

Parâmetros	Valor	
mAs	400	
kV	120	
Tipo De Aquisição	Helicoidal	
Janela De Reconstrução	stand	
Espessura Do Corte	0,625mm	
Tempo De Rotação Do Tubo	0,7	
Pitch	0,984:1	
Modo De Reconstrução	Full	

Tab. 3-protocolo utilizado para a aquisição de imagens dos testes

Fonte: Arquivo da Autora

As Unidades Hounsfield (HU) dos materiais utilizados na elaboração do modelo foram medidas na imagem CT adquirida. Para esse fim, utilizou-se o software Amide[®]. Três volumes de interesse (VOI) esféricos foram posicionados em cada material. Também foram posicionados VOI's no ar ao redor o modelo para comparação. Calculou-se a média e o desvio padrão das três medidas para determinar o HU do material. O fantoma de Avaliação Diária da Qualidade da Imagem (*Daily Quality Assurance –* DQA), composto de água e PMMA, também foi incluído na imagem para o cálculo de HU desses dois materiais. Nas imagens adquiridas, também foram realizadas medidas dos diâmetros dos tubos impressos no modelo para avaliar a precisão da impressão.

3. RESULTADOS

O modelo da peça no software FreeCAD contendo os conjuntos de hastes de diferentes diâmetros pode ser observado nas Figs. 4-A e 4-B. Seis conjuntos de hastes com diâmetros variados (3mm; 5mm; 6,5mm; 8mm; 9,5mm; 11mm) foram modelados.

Figura 4- representação do modelo. A e B) no programa de FreeCAD; C e D) após a impressão; E) depois da colocação das resinas.

A impressão do modelo da peça contendo os conjuntos de hastes durou cerca de 1 dia e os resultados estão apresentados na fig. 4-C e 4-D. A qualidade da impressão demonstrou-se suficiente representar todos os detalhes do modelo.

A peça impressa preenchida com dois tipos de resinas epóxi transparentes pode ser observada na fig. 4-E. Após o processo de cura, observou-se o empenamento dos tubos de 3mm, além de pequenas bolhas e descontinuidades na região das resinas foram observadas visualmente.

As imagens de CT para a verificação da integridade do modelo, homogeneidade da resina e análise de HU foram apresentadas na Fig. 5. Foi possível observar a presença de tubos empenados, bolhas e regiões com aparência de fissuras. A medição preliminar dos diâmetros dos tubos após a impressão e o preenchimento com resina epóxi demonstrou uma boa precisão. Os diâmetros especificados (3 mm; 5 mm; 6,5 mm; 8 mm; 9,5 mm; 11 mm) foram os mesmos obtidos nas medições realizadas na imagem do modelo. A única exceção foi observada para o tubo de 5 mm, cujo resultado obtido foi de 5,5 mm.

Os valores de HU obtidos para a todos os materiais, incluindo a comparação com os materiais do fantoma DQA foram apresentados na tab.4. Os HU da água e do ar se aproximaram do valor esperado (0 e -1000 respectivamente). No caso da água o desvio padrão observado foi elevado e novas medições com mais VOI's podem gerar resultados melhores. No caso do PMMA, o trabalho [14] reporta o valor de 120 ± 10 para seu HU. Tal valor é compatível com o apresentado na tab. 4.

Figura 5- Imagens CT do primeiro protótipo após o preenchimento. A) Corte transversal; B) Corte Coronal; C) Corte Sagital. Nos cortes tomográficos pode-se observar a presença de bolhas de ar (BL), a região com baixo preenchimento de impressão (P_{25%}) e presença de tubos empenados (TT) devido ao processo de retração da resina durante a cura. Também foram incluídas imagens renderizadas do modelo (D e E).

Material	Unidade Hounsfield aferida na imagem				
	VOI 1	VOI 2	VOI 3	Média	SD
H ₂ O	0.6	6.7	7.1	4.8	3.6
PMMA	127.0	128.1	127.5	127.5	0.6
P _{25%}	-188.5	-185.5	-163.5	-179.1	13.7
Ar	-1002.0	-976.0	-1001.0	-993.0	14.7
Resina MV 1	81.9	57.1	73.9	70.9	12.7
Resina MV 2	106.6	97.7	93.7	99.3	6.6

Tab. 4-Unidade de Hounsfield dos materiais utilizados na produção de protótipo, do ar, água e do PMMA.

Fonte: Arquivo Da Autora

42.2

43.4

4.6

48.5

39.5

No que se refere às resinas de preenchimento, a resina de alta viscosidade apresentou valores próximos à faixa de variação dos HU relatados para diversos tecidos moles: músculo (+10 a +40); fígado (+40 a +60); e cérebro (+20 a +45) [15]. Já a resina de média viscosidade, apresentou valores de HU diferentes entre si (de cerca de 28%) e maiores que o da resina de alta viscosidade. Contudo, ainda foram mais próximos do HU dos tecidos moles que o PMMA, utilizado na fabricação de diversos fantomas utilizados para a avaliação da qualidade da imagem (incluindo o Jaszczak). As regiões de PLA com preenchimento de 25 % apresentaram um valor de HU mais próximo aos de tecidos adiposos (-100 a -50) [15]. Esse percentual de preenchimento foi adotado para acelerar a impressão e poupar filamento, mas não deve ser utilizado em impressões futuras focadas em mimetizar as características radiológicas de tecidos moles.

4. CONCLUSÃO

Resina AV

Os resultados obtidos até o momento demonstraram a viabilidade do desenvolvimento de um fantoma modular para avaliação da qualidade da imagem PET. Uma peça para estudo da resolução espacial em lesões quentes foi modelada, impressa em 3D e preenchida com resina epóxi. Contudo, melhorias no processo de produção e preenchimento da peça ainda são necessárias para evitar empenamentos e falhas de preenchimento da resina. Por meio da análise dos HU pode-se observar que a resina epóxi apresentou valores de HU mais próximos dos esperados para tecidos

moles do que o do próprio PMMA, utilizado em diversos simuladores comerciais, sendo assim uma ótima alternativa ao querer simular tecidos moles.

AGRADECIMENTOS

As seguintes instituições brasileiras apoiam este projeto de pesquisa: Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG - Projeto APQ-03582-18), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e Coordenação de Formação de Pessoal Graduado (CAPES). Este trabalho também faz parte do INCT/INAIS, projeto CNPq 406303/2022-3.

REFERÊNCIAS BIBLIOGRÁFICAS

[1] P. E. Christian, & Waterstram-Rich, K. M. Nuclear Medicine And PET/CT-E-Book: Technology And Techniques. Elsevier Health Sciences. St. Louis, Missouri. Mosby, Ed.7^a; 18/03/2013

[2] Alqahtani, Fawaz F. "SPECT/CT and PET/CT, related radiopharmaceuticals, and areas of application and comparison." Saudi Pharmaceutical Journal 31.2 (2023): 312-328.

[3] D. L. Bailey, et al. Nuclear Medicine Physics: A Handbook For Teachers And Students. International Atomic Energy Agency, Áustria, 2014.

[4] D. W. Townsend, et al. *PET/CT Today And Tomorrow*. Journal Of Nuclear Medicine. Tenesse. Volume 45.1 Pag. 4s-14s. 2004.

[5] CNEN 3.05 https://www.gov.br/cnen/pt-br/acesso-rapido/normas/grupo-3#3, acessado dia 30/07/2024.

[6] IAEA <u>https://www.iaea.org/publications/8002/quality-assurance-for-pet-and-petct-systems</u>, acessado dia 30/07/2024.

[7] EANM Physics Committee: Busemann Sokole, E., et al. Routine Quality Control Recommendations For Nuclear Medicine Instrumentation. European Journal Of Nuclear Medicine And Molecular Imaging, Ed. 37, Pág. 662-671. 2010.

[8] M. Koole, et al. *EANM Guidelines For PET-CT And PET-MR Routine Quality Control*. Zeitschrift Für Medizinische Physik, Ed. 33(1), Pág. 103-113. 2023

[9] L. V. de Sá. Controle De Qualidade De Imagem Em Tomografia Por Emissão De Pósitrons. Phd Diss., Universidade Federal Do Rio De Janeiro, 2010.

[10] NEMA NU 2-2007- Performance Measurements Of Pósitron Emission Tomographs- NEMA(National Eletrics Manufactures Association), 2007. Disponível em: <u>www.nema.org</u>

[11] ACR, <u>Https://Accreditationsupport.Acr.Org/Support/Solutions/Articles/11000062798-Phantom-Testing-Nuclear-Medicine-Revised-1-5-2024-</u>, acessado Dia :20/02/2024

[12] Https://Ezagbrasil.Com.Br/Produto/Phantom-Jaszczak-Flangeless-Deluxe-Ect-Fl-Dlx-P/, acessado Dia 20/02/2024

[13] E. Silvestro, et al. *Imaging Properties Of Additive Manufactured (3D Printed) Materials For Potential Use For Fantoma Models*. Journal Of Digital Imaging, Edição: 33(2), Pág. 456–464.2020.

[14] Travassos, Paulo Cesar Baptista, et al. "Alguns aspectos da Avaliação da Qualidade da Ima-gem em Tomografia Computadorizada." *Brazilian Journal of Radiation Sciences* 5.3-A (2017).

[15] Referência do HU https://myendoconsult.com/learn/hounsfield-unit-chart/ acessado dia 30/07/2024.