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ABSTRACT

The present study seeks to develop a classifier of radioactive sources based on gamma spectroscopy and
artificial intelligence, which makes use of Keras[1] and TensorFlow[2], both free and open-source technolo-
gies. Through these technologies, an artificial neural network (ANN) was developed, which makes use of
supervised machine learning and the backpropagation algorithm. The neural network was trained with a
dataset of spectra from simulations performed by the MCNP5 code. To achieve the objective of functioning
as a classifier within the proposed scope, several versions of the neural network were evaluated, to study
its performance, to determine important parameters such as a learning rate, and the optimizer used, among
others, where RNA performance was evaluated by analyzing the network accuracy and loss curves. The gen-
eralization capacity was assessed by submitting spectra raised experimentally by an apparatus composed of
a NaI (Tl) detector, a multichannel analyzer, and the Maestro software for the experimental data acquisition,
which were used with the use of sealed radioactive sources of Co-60, Cs-137, and Eu-152. Six versions of
the ANN were selected, capable of solving the proposed problem, with accuracy greater than 95%.

1. INTRODUCTION

It is notable in the literature the applications of Artificial Neural Networks (ANN) acting as clas-
sifiers in diverse fields, including the classification of radionuclides. ANNs are computational
mathematical models inspired by the learning dynamics of the biological brain, which is based on a
network of nerve cells (neurons) and the connections they form among themselves, called synapses.
Likewise, ANNs are formed by interconnections between artificial neurons, called perceptrons.
This model establishes numerical weights between these connections (synapses), allowing the net-
work to learn by updating these weights, similarly to the biological learning process [3].
A radionuclide can be characterized by its gamma emission spectrum, which is formed by count-
ing each gamma emission energy from a given radionuclide and ordering these counts by emitted
energy. The spectrum can be represented by a graph where the x-axis represents the energy scale
of gamma emissions (in keV) and the y-axis represents the count of each energy band obtained
by the detection system [4]. To generate this spectrum, a detection system with a sensor capable
of transforming the incident radiation energy into an electrical pulse proportional to that energy is
required [5].
Thismethodology involves the use of ANNs and SupervisedMachine Learning for the classification
of radionuclides based on their gamma spectroscopy, utilizing simulation data from the MCNP5
code for training and testing the classifier. The classifier is then fed with spectrum data obtained
from experimental apparatus not seen during training to evaluate the classification results.
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One key application of this approach is the development of portable, personal-use systems that
can be applied in various vehicles. These systems provide real-time radionuclide classification
and monitoring, offering practical solutions for field operations, emergency response, or personal
safety devices in radiation-prone environments [6]. Furthermore, such systems can help reduce
unnecessary exposure to radiation for occupationally exposed individuals by providing timely and
accurate detection of radioactive materials [7]. The following section will describe the steps taken
to achieve these results.

2. METHODOLOGY

Themethodology consisted of two phases, the first of whichwas aimed at setting up an experimental
apparatus for surveying the spectra of nuclides Co-60, Cs-137, and Eu-152 at reproducing this
apparatus in the MCNP5 computational simulation environment. The second phase of the study
was dedicated to the study of the classification of radionuclides based on gamma spectroscopy,
through the use of Artificial Neural Networks. The first phase entails the subsequent processes: (i)
Installation of experimental apparatus and inspection of Co-60, Cs-137, and Eu-152 spectra with the
use of a NaI(Tl) detector; (ii) Reproduce the experimental apparatus in a computational simulation
environment of MCNP5 code; and (iii) Verification of simulated spectra the use of comparative
evaluation of experimentally received spectra. The second phase primarily involves: (i) Setting up
and training the initial ANNmodel utilizing the Keras framework; (ii) Examining the metrics linked
with the implementation of neural networks that were configured and trained in the previous stage;
(iii) Analyzing the outcomes; and (iv) Evaluating the ANN for the radioisotope spectra utilized in
experimental surveying.
2.1. First Phase
The experimental equipment used in this phase consisted of: (i) a Sealed source of Co-60 with
nominal radioactivity of 41 kBq, production statistics from 17April 2007; (ii) A sealed source of Cs-
137 with a nominal radioactivity of 37.4 kBq, with production statistics as of April 17, 2007; (iii) A
sealed source of 152 Eu with a nominal radioactivity of 159.7 kBq, production statistics as of March
7, 2007; (iv) A set consisting of a scintillator detector, NaI(Tl), and a Canberra model 8023X3
photomultiplier tube valve with a Canberra model 2007 base; (v) Ortec preamplifier, model 113;
(vi) Cambera amplifier, model 2022; (vii) MCBOrtec module, model 926; (viii) Ortec high voltage
source, model 556; (ix) BIN Ortec, model 4001C; (x) Tektronix model TBS1064 oscilloscope; (xi)
Amprobe Multimeter, Model HD110C; (xii) MCB Cable, Model DPMUSB; (xiii) Computer; and
(xiv) ORTEC Maestro™ software, Version 7.01.
The apparatus used in the experiment with the NaI(Tl) detector consists of a rectangular wooden
base 27 cm long, 23 cm wide, and 2.5 cm thick, and a central perforation 7.6 cm in diameter.
There are four lead ring structures surrounding the sensitive volume of the detector, with outer and
inner diameters of 15.2 cm and 8.26 cm, respectively. These structures encircle the area of incident
radiation, except for the upper portion of the sensitive volume. The last lead ring is supported by a
wooden stand consisting of a wooden disc with a diameter of 13.6 cm and carried by two identical
rods with heights, widths, and thicknesses of 7, 3 cm, 9 cm, and 1.3 cm, respectively, made of
wood. There is a perforation in the center of the wooden disk, with a diameter of 5.2 cm, and
above it, there is a fountain holder composed of two acrylic sheets that overlap each other, with
a thickness of 0.2 cm each. The upper blade contains a central perforation of the exact diameter
(2.6 cm) to accommodate the sealed cylindrical sources used in the experiment. The geometry and
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chemical composition of the materials used in the apparatus are illustrated in Figure 1, where the
colors represent the materials used. Details of detectors less than 2 mm thick have been removed
from the front view for simplicity. It is represented by material number 4 and is illustrated in the
figure concerning composition as materials 4. a, 4. b, and 4. c.

Figure 1. a) Schematic front view of the apparatus geometry; b) Chemical composition
of the materials used, including their proportion in mass and density

The detector was powered by a high voltage source with a voltage of 750 V. This voltage was
roughly set to 500 V by the 6-position switch control, 200 V by the 5-position switch control,
and 74 V by the 10-turn precision potentiometer. The tweaks were made by measuring with a
multimeter before switching on the detector. The NaI (Tl) detector diode output was connected to
the preamplifier input with capacitance set to 0 µF . Following that, the signal output of the preamp
is connected to the input of the amplifier. Then, the output of the unipolar amplifier is connected
to the input of the MCB module and is equipped with a T-piece. This allowed the signal from the
amplifier to be captured by the oscilloscope, to enable fine-tuning of the shaping parameters to 0.5
µs, coarse gain to a value of 100, and fine gain to a value of 0.33. The tuning was done by visual
analysis of the pulses obtained after assembling the device using a Co-60 source placed inside the
device and attempting to maximize the pulse height without saturating it. Tweaks were made in
the P / Z controls (pole-zero) to eliminate the small undershoots that formed during the adjustment.
Adjusted the shaping control by checking the generated pulse width for better symmetry. The
MCB module was set to a low window of 0.5V (LLD setting) and the zero control was set to 0V.
The module was then connected to a computer via a DPM USB cable, and spectroscopic data was
received by the Maestro Software.
The simulation phase with MCNP5 code consisted of reproducing the shape of the NaI (Tl) de-
tector described in this section. After the geometry was simulated, three MCNP5 input files were
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developed. Since these files differ only in the composition of the radiation source, the simula-
tion reproduces the spectra of the three radionuclides used. Geometric element, cell, and source
construction was performed according to the definition in the MCNP documentation [8], [9].
The source was configured as a fixed plane, and the composition of theMCNP5 input file was based
on theoretical energy mapped from the Laraweb database [10]. The reproduction distance between
the source and the detector was 110 mm. The F8 tally of MCNP5 is used to generate the output file
using the simulated spectrum, using the GEB function with parameters a, b, and c set to −9.3408×
10−3, 7.5107× 10−2 and 0.5843 respectively, with a reliability criterion of relative error less than
0.1. Some modeling points, such as modeling the parameters, materials, and detectors used in the
GEB function, are based on MEDEIROS work [11]. The simulation was run on a computer with
an Intel® Core™ i7 8700 3.2 GHz processor (6 physical cores and 12 logical cores), 8 GB RAM,
and running the 64-bit version of the Windows 10 Home operating system.
It should be noted that all the studies were conducted using the liquid spectrum, which was obtained
by subtracting the background radiation from the experimental spectrum, to disregard the back-
ground radiation in computer simulations. This simplification was intended to reduce the number
of variables in the study and to facilitate the generation of a simulated spectrum.

2.2. Second Phase

The second phase started from an already validated ANN architecture (NUNES [12]), which orig-
inated five other versions of ANN, resulting from successive alterations of the architectural hyper-
parameters, to improve the classification performance of these networks. The loss and accuracy
curves are key to the test dataset to guide the comparison of classifier performance between ANN
versions. From this point of view, the goal is to make the final accuracy of the ANN as high as
possible and to minimize the loss (or error). It is important to highlight that, before being used
as training, tests, and production data of the ANN, both the simulated spectra and those obtained
experimentally, which originally have 8192 channels, were sampled for 128 channels, aiming at
compatibility with the number of neurons in the ANN. input layer of the networks, to provide the
reduction of the computational cost during the processing of the experiments.
The initial configuration of the ANN assumes a three-layer (one hidden layer) network architecture,
the first layer with 128 neurons using the hyperbolic activation function, the second layer with
64 neurons using the complementary Gaussian activation function, and the third layer using the
logistic activation function with 3 neurons. In this model, a learning rate of 0.1 was used and an
SGD optimizer with a momentum equal to 0.44, using 3600 training epochs. The ANN model was
implemented in Python [13], using Keras [1] and Tensorflow [2].
The second version of ANN consists of a first variation in the parameterization of the base model
that was performed by changing the activation function of the last layer by the softmax function,
because it transforms the output vector into a probabilistic representation, making the results more
intuitive.
From the third version, there was an extended ANN’s knowledge base. This process was performed
using a computer simulation model to obtain simulated spectra of other target nuclides listed in the
inventory shown in Table 1, including a total of 24 radionuclides. The nuclide selection is based
on a study of CURZIO [14], which obtained a radionuclide inventory resulting from a simulation
of an accident involving a small DWR reactor using the SCALE code, and PEREIRA [15], which,
in their study, evaluated the radioactive effects of a Radiological Dispersion Device (RDD), also
known as a dirty bomb, through computer simulation.
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In this phase, only the number of neurons in the output layer is changed to 24 because the number
of radionuclides under investigation has increased. From that point onwards, subsequent versions
of the ANN underwent experimental definition of hyperparameters until the classification of the
experimental spectra for the radionuclides Co-60, CS-137, and Eu-152 was achieved.

Source Half-life Source Half-life Source Half-life
Ba-140 12.753 d Cs-137 30.05 y U-238 4.468x109 y
I-131 8.0233 d Co-60 5.2711 y U-235 704x106 y
I-135 6.57 h Am-241 432.6 y K-40 1.2504x109 y
Kr-85m 4.480 h Ra-226 1.600x103 a Th-232 14.02x109 y
Te-132 3.230 d Ir-192 73.827 d Eu-152 13.522 y
Xe-133 5.2474 d Pu-238 87.74 y Ba-133 10.539 y
Xe-133m 2.198 d Po-210 138.3763 d Co-57 271.81 d
Xe-135 9.14 h Cf-252 2.6470 y Mn-54 312.19 d

Table 1. Radioactive sources used in the simulations [10]

During this phase, experiments were performed to determine the learning rates and learningmomen-
tum [3]. After adjusting these parameters, an experiment based on the comparative KINGMA study
[16] was performed to define the optimizer used in the network. The parameter that determines the
choice is an analysis of the loss function related to the number of training epochs, choosing the
optimizer that reduces the loss function most quickly concerning the learning period.
Once the learning rate, momentum (if applicable), and optimizer to be used are determined, each
parameterization is subject to a graphical analysis to examine the relationship between the test
and training datasets and their associated loss functions. This analysis is crucial as it validates
the possibility of overfitting [17]. In cases where overfitting signals were identified, the training
method with early stopping in the network was used. In that phase, the experimental nuclides used
in the study were best classified, and networks with at least 95% accuracy were considered viable.
The study results will be shown in the next section.

3. RESULTS AND ANALYSIS

Similarly to the methodology section, the results followed the same division into two phases used
in the methodology, to facilitate the understanding of the workflow of activities.
3.1. First Phase Results
The first phase of this study presents the results obtained from energy calibration of the experimental
apparatus, passing through the experimental survey of the spectra of Co-60, Cs-137, and Eu-152,
as well as the simulation of the experimental apparatus with the use of the MCNP5 code.
Energy calibration was performed by surveying the spectra of the three radionuclides used, using
the Maestro software, which supports up to 96 calibration energies, and the Laraweb radionuclide
database [10], considering only energies with intensities above 10%. The calibration process began
with Eu-152, which has the highest energy among the nuclides. Then, Cs- 137 and Co-60 were
used in the process. It is worth noting that, due to the energy resolution of the detection system
used, only six energies with intensities above 10% could be distinguished for Eu-152. The three
spectra were surveyed without variation of the experimental and electronic devices, with a live time

5



SemanaNacional de Engenharia Nuclear e da Energia e Ciências das Radiações - VII SENCIR
Belo Horizonte, 12 a 14 de novembro de 2024

of 3600 seconds, with an average dead time of less than 10%. The calibration curve was adjusted
by the equation Y = 0.208Xi−9.553, whereXi is the ith channel of the spectrum.
Regarding MCNP5 code simulation, it was verified that the comparison between the experimental
and simulated spectra was satisfactory, especially in the approximation of the characteristic en-
ergy peaks of each spectrum. This analysis was performed visually, through the superposition of
experimental and simulated spectra, for each radionuclide.

3.2. Second Phase Results

The first ANN version was carried out using the spectra obtained through the simulation of the
experimental apparatus by the MCNP5 code, as training and test data, for the spectra of Co-60,
Cs-137, and Eu-152. As production data, to evaluate the quality of the generalization capacity of
the model were used the experimental spectra were surveyed with the NaI(Tl) apparatus, described
in the methodology section.
This initial validation aimed to verify if the visual similarity between the experimental and simulated
spectra was reflected in the classification capacity of the network, as represented by the first version
of the ANN file. The values of the loss and accuracy can be viewed in Table 2, as well as its
separation in classes. The values of accuracy and loss in the last training epoch obtained were
100% and 2.0605×10−4, respectively.
The second version of ANN, in which the activation function of the output layer was changed to
a softmax function, generated the final values of accuracy of 100% and loss of 1.5760×10−4, as
can be viewed in Table 2. Also can be viewed in this table the results of the separation into classes
of the model, which show an improvement in changing the activation function of the last layer in
reducing the final value of the loss function.

ANN Vers. Co-60(%) Cs-137(%) Eu-152(%) Loss Accuracy(%)
First 08.19 23.79 12.45 2.0605 × 10−4 100.00

Second 99.93 99.83 98.25 1.5760 × 10−4 100.00
Third 78.14 40.53 86.65 0.6872 85.41
Fourth 69.92 89.46 3.52 0.4029 91.66
Fifth 99.84 97.45 96.19 0.4763 95.83
Sixth 100.00 98.97 99.14 2.7680 × 10−3 95.83

Seventh 99.87 99.99 99.88 0.188466 95.83

Table 2. Classification, loss, and accuracy results by all ANN versions

Concerning the third version of the ANN, it was observed that the probability related to submission
of the Cs-137 experimental spectrum was only 40.53%, which required the network to refine its
parameterization. It was verified that the loss function had high values in relation to the secondANN
version (approximately 0.6872 for the third ANN version against the final loss value of 1.5760×
10−4 obtained in the training of the second ANN version), due to the increase in the number of
classes in the network’s training dataset.
The fourth ANN version was obtained with an experimental variation in momentum and learning
rate parameters. The learning rate reflects the number of steps that the loss function takes to reach a
local minimum. Thus, the order of magnitude has been reduced from 10−1 to 10−2, to observe the
behavior of this ANN version. However, the change in the learning rate must take into account its
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relationship with the momentum, as it contributes to the rate of fall of the loss function curve. To
determine a momentum value that best fits the learning rate of 10−2, a comparison between training
performed with the fourth ANN version was performed, observing the drop speed of the loss curve,
with the momentum value varying between 0.5 and 1.0. The value that had the best performance
according to the established criterion was 0,95. The classification results and the values of metrics
of this ANN version are shown in Table 2, where it can be seen that the classification is still erratic in
relation to Eu-152, and the loss function has fallen but is still in high value considering the second
ANN version, remaining at approximately 0.4029. The accuracy at the end of the training was
91.66.
Refining the network parameterization, an empirical analysis was also carried out between the per-
formance of the optimizers available in Keras, in the same way as the study carried out by [16],
based on the architecture of the fourth ANN version. Thus, a comparison was made between the
loss curves between network training, with the number of epochs set at 200, with Adam being the
optimizer that had the best performance, as illustrated in figure 2 (In addition to Adam, the opti-
mizers Adadelta, SGD, SGD Nesterov, RMSprop, and Adagrad were tested).

Figure 2. Definition of optimizer with fourth ANN version

Therefore, the optimizer used by Keras was changed from SGD (Stochastic Gradient Descent) to
Adam. This time there was a reduction in the loss function, to the approximate value of 0.4763.
The classification became assertive in relation to the 3 tested nuclides. The fifth ANN version file
refers to the network version after the optimizer change, while the classification results and the
metrics values are displayed in Table 2. The accuracy after the end of training was 95.83%. The
result obtained with the fifth ANN version matched the objective of the study, proving to be a viable
network to be used as a classifier within the premises established for the study. However, it was
still possible to experimentally evaluate the impact of altering some network parameters described
below. Analyzing the curves of the training and testing loss functions of the fifth.
ANN version, as shown in Figure 3, a behavior that would represent their loss of the ability to
generalize was detected [3], being a conditional situation to the use of early stopping. The use of
early stopping shows that the fifth ANN version can be assertive in relation to the classification of
the nuclides obtained experimentally, with the training carried out with only 313 epochs, reaching
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a loss of 0.340864, less than the loss of 0.476314 of the training carried out with 3600 epochs,
obtaining the same accuracy of 95.83%. Therefore, the aforementioned model can be considered
as being viable for the classifier.

Figure 3. Analysis of the curves of the training and testing loss functions of the fifth
ANN version

The next parameter evaluated, according to the sequence established in subsection 2.2, was the
training batch size (batch size). The batch size was increased from 32 to 128, with this change
being the sixth ANN version. The results of the separation into classes of the production data for
the sixth ANN version are shown in Table 2, as well as the metrics values. The sixth version of the
ANN also matched the criteria established for the study, being considered a viable model for the
classifier. The analysis of the training and test loss function curves of the sixth version of the ANN
also showed a characteristic behavior of the overfitting indicator. Therefore, a study was carried
out, similar to the one done for the fifth version of the ANN, including the early stopping option.
It was observed that the sixth ANN version model, trained with 101 epochs, already becomes a
viable model, reaching 95.83% accuracy, having a loss value at the end of training of 0.002768,
much lower than the loss of 0.316896 of training with 3600 epochs, keeping the same accuracy
of 95.83%. In addition, the classification was assertive in relation to the nuclides submitted to the
classification, with percentages above 93.58%.
Following the sequence established in subsection 2.2, the seventh ANN version network underwent
the inclusion of a second hidden layer, using the same activation function of the first hidden layer
(complementary to the Gaussian). After performing the training, there was no improvement in the
classification probability percentages of the experimental spectra of radionuclides Co-60, Cs-137,
and Eu-152, which are tabulated in Table 2. The values of final loss and accuracy observed were
0.188466 and 95.83%, respectively, and the curves can be viewed in Figure 4. The seventh version
of the ANN also matched the criteria established for the study, being considered a viable model for
the classifier. Although the analysis of the seventh ANN version training and testing loss function
curves, as performed in the fifth and sixth versions, does not show a behavior indicative of over-
fitting. However, early stopping was applied to check the experimental result resulting from the

8



SemanaNacional de Engenharia Nuclear e da Energia e Ciências das Radiações - VII SENCIR
Belo Horizonte, 12 a 14 de novembro de 2024

test, following the methodology established for this work. Was observed that the seventh ANN ver-
sion model trained with 273 epochs presents itself as a viable model, reaching 95.83% of accuracy,
with a loss value at the end of training of 0.300991, higher than the value of 0.188466 obtained by
training the network with 3600 epochs, although it maintains the same accuracy of 95.83%. Nev-
ertheless, the probability presented by the submission to the classification of Eu-152 dropped from
99.88% to 94.40%. Thereby, six ANN models are viable for the classifier, represented by the fifth,
sixth, and seventh ANN versions, and its derivative models obtained by an early stopping training.

Figure 4. Loss and accuracy curves of the seventh ANN version

4. CONCLUSIONS

The work showed how feasible the use of artificial intelligence, more specifically of supervised ma-
chine learning, is through the application of Artificial Neural Networks (ANN) for the development
of automated classifiers of radioactive sources. The developed classifier was able to distinguish the
radionuclides Co-60, Cs-137, and Eu-152, based on gamma spectroscopy, having its training car-
ried out based on an inventory of simulated gamma spectra of 24 radionuclides. The geometry of the
experimental apparatus illustrated in section 2.1 was reproduced within theMCNP5 code so that the
data extracted from the simulation could be used in the training and testing sets of the studied ANN
versions. The evolution of the classifier was carried out through changes in the main parameters
of ANN, based on the observation and analysis of the behavior of the loss and accuracy functions,
used as metrics to assess the quality of the classifier. The study allowed the understanding of the
operation of equipment and systems available on the international market, with similar functional-
ity, even if the implementation of their software uses classification algorithms different from the
ANNs. This shows that, in addition to understanding how spectra classifiers work, a viable solution
was found for the application in question. It should also be noted that the uncertainties regarding
the classification of the experimental spectra of the sources, shown by the classifier of this study,
even in a controlled environment, also occur in commercial products with the same purpose, since
the classification of spectra requires the analysis of several parameters such as geometry, influence
of background radiation, presence of other radioactive sources in the sample, among other factors.
Among many parameters present in the ANN implementation carried out using the Keras library
and TensorFlow, it was observed that special attention is needed regarding the learning rate, the
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optimizer used, the training batch size, and the number of hidden layers of the network. Among the
models studied, it was found that 6 of them are viable models for use as classifiers within the scope
defined for this study, with accuracy above 95%, and with good generalization ability in relation to
the 3 experimental spectra used in the study. It is expected that this generalization capability will
be valid for other spectra, among those present in the simulated spectra used as training data for
ANN versions. Thus, it is expected that the present study takes a step towards increasing autonomy
in the design of this type of detector, and in its applications for Radiological and Nuclear Defense
(DRN).
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