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ABSTRACT 

 
The Nuclear Accident Identification Problem (NAIP) is a critical issue faced by Nuclear Power Plants 

(NPPs), focusing on accurately and rapidly identifying an unknown occurrence in an NPP facility. The 

NAIP is approached by analyzing data from simulations of Design-Based Accidents (DBA) presented in 

the Final Safety Analysis Report (FSAR) of a Brazilian Nuclear Power Plant. This work proposes 

utilizing the Population-Based Incremental Learning (PBIL) Algorithm to model the NAIP in NPPs. The 

concept underlying the proposed methodology involves classifying anomalous events using data from 

normal operational conditions and three design basis accidents within the dataset of the plant state list 

simulated for the Brazilian Nuclear Power Plant Angra 2. In this approach, the NAIP is seen as a class 

separation problem, where PBIL is used to find the representative vector of each plant state class, aiming 

to maximize the number of correct classifications. The proposed method enhances classification based on 

Voronoi Diagrams to define the regions of influence for each plant state, enabling the generation of a 

"Don't-Know" response. The Don’t-Know Response Generation (DKRG) helps differentiate normal and 

abnormal plant states, thereby aiding in timely decision-making and mitigating the impacts of potential 

nuclear accidents. In this study, the plant state variables will be selected using the Principal Component 

Analysis (PCA) method, an intelligent approach for choosing the most important plant variables for the 

problem. This research demonstrated that the PBIL algorithm is capable of obtaining a centroid vector 

with 100% accuracy for the four operating conditions outlined in the methodology. The algorithm was 

able to generate the "unknown" response for the tested operating conditions and remained robust against 

data noise up to 5%. The results of this proposed methodology will be compared with those from the 

literature. 

 
1. INTRODUCTION 

 

Nuclear Power Plants (NPPs) are important facilities in clean energy production, there 

are 440 nuclear power reactors in the world [1], representing 25% of the world’s low-carbon 

electricity production. In a NPP, there are several protocols that guarantee safety during an 

abnormal event. On this occasion, the operators have to identify the situation in progress to be 

able to follow the protocols and maintain control. In order to help the operator identify an 

abnormal event that may occur, the Nuclear Regulatory Commission has made the presence of 

Safety Parameter Display Systems (SPDS) [2] necessary in the control room. These systems 

should help the operators by synthesizing the information available in the control room, by 

processing indicators from alarms and sensors.   

In order to provide an accident diagnosis methodology to assist the operators in 

classifying an event, a methodology is needed that can classify an abnormal event with accuracy 

and quickness [3]. The literature shows that the academic community proposes prototype 

systems based on artificial intelligence algorithms for accident identification, such as the 

Genetic Algorithm [4], Swarm Algorithms like Particle Swarm Optimization [5], or Neural 

Networks [6]. 



 

 

 
 
Semana Nacional de Engenharia Nuclear e da Energia e Ciências das Radiações – VII SENCIR 
Belo Horizonte, 12 a 14 de novembro de 2024 

 

 
This article proposes a methodology based on the Population-Based Incremental 

Learning (PBIL) Algorithm [7][8] combined with the Don’t Know methodology [9] and the use 

of the Principal Component Analysis (PCA) [10][11] variables, to address the Nuclear Accident 

Identification Problem. The PBIL Algorithm is used to find the optimal representative vector, 

formed by prototype vectors representing each accident employed within the model. The Don’t 

Know methodology has the objective to delineate the “influence zones” of the representative 

vectors found by the PBIL Algorithm, and to assign the Don’t Know Response for events out of 

the influence zones of the representative vectors. The Principal Component Analysis is used to 

reduce the dimensionality of the problem, finding the best set of variables for the problem.  

The proposed approach is evaluated using a case study that involves data from four 

operational conditions of a Pressurized Water (PWR) Reactor, using a simulated dataset of the 

Normal Operation, Loss of Coolant Accident (LOCA), Main Feed Water Break (MFWBR), and 

Steam Generator Tube Rupture (SGTR) at the Brazilian nuclear Power Plant PWR Angra 2.  

 

2. METHODOLOGY 

 

2.1. Population-Based Incremental Learning Algorithm 

 The PBIL algorithm was proposed by Bajula (1994) [12], and relies on the concept of 

competitive learning idea the basic structure of the Genetic Algorithm [13]. The PBIL is simpler 

than the GA, but can outperform it in the optimization of certain problems [8]. In this algorithm, 

the individuals are created at each generation based in a probability distribution vector called 

vector P, where each component represents the probability of a bit being set to 1. In PBIL, the 

individuals are encoded in binary, and the population is generated based on vector P. 

In GA, crossover and mutation operators are used to work on the population to find the 

best solution. In contrast, PBIL does not use such operators but instead focuses on optimizing 

the probability vector P. The goal is to adjust the P vector to have high probabilities for 

generating individuals that represent the best solutions for the problem. The P vector is 

initialized with all components set to 0.5, as shown in Fig. 1. 

 

                       P = 0.5 0.5 0.5 … 0.5 0.5 0.5  

 Fig 1. Representation of the P vector, at start.  

 This ensures that every region of the search space has the same probability of being 

chosen; in this case, the probability of generating the value ‘0’ or ‘1’ is the same for each bit. 

From vector P, the binary encoded individuals are formed. After the individuals are formed, 

they are evaluated, receiving a fitness value, and the best and the worst individuals are used in 

the optimization process. 

 Knowing the best and the worst individuals, the vector P is updated. The approach 

involves adjusting the P vector closer to the best individual and further from the worst 

individual. The update uses the parameters Lr_P and Lr_N, which symbolize the positive 

learning rate and the negative learning rate, respectively. The process is iterative: in each 

generation, the vector P is adjusted to be closer to the best solution and further from the worst 

solution. After updating the vector P, the individuals produced are more similar to the best 

solution and less similar to the worst solution in each generation. The aim of the PBIL algorithm 

is to evolve the P vector to resemble the best solution, as depicted in Fig 2, considering the best 

solution as the vector [1,0,0,...,1,1,0]. 

 

                       P = 0.98 0.03 0.01 … 0.96 0.99 0.02  

 Fig 2. Representation of the P vector, at the end.  

 The P vector shown in the Fig. 2 is likely to produce solutions similar to the vector [1, 

0, 0,…, 1, 1, 0], with high probability. Being P a vector with K bits, and being I the index of the 
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bits present in the list [0, 1, 2,…, k-1],  the incremental in the learning is performed according to 

Eq. 1 and Eq. 2, for positive incremental learning and negative incremental learning, 

respectively. In this work, negative incremental learning was not used: assuming L𝑟_𝑁 = 0, and 

this algorithm will be referred to as PBIL_S. 

 

 𝑃[𝑖] = (1 − 𝐿𝑟_𝑃)𝑃[𝑖] +  𝐿𝑟_𝑃 ∗ (𝐵𝑒𝑠𝑡[𝑖]) (1) 

 
𝑃[𝑖] = (1 − 𝐿𝑟_𝑁)𝑃[𝑖] +  𝐿𝑟_𝑁 ∗ (𝑊𝑜𝑟𝑠𝑡[𝑖]) (2) 

2.1.1. PBIL_N 

 The PBIL_N [9] is a variation of the original PBIL algorithm, and uses the information 

of the N best individuals in each generation to update the vector P.  The learning rate is 

dedicated to generating new individuals similar to the N individuals of the entire population. 

Being P the probability vector with size K, i the index of the bits [0, 1, 2,…, K-1] and j being the 

index of bests solution, being the list [0, 1, 2,…, N] the Eq. 3 shows the updating of the 

probability vector components in PBIL_N. The Eq. 4 shows how the learning rate Lr is defined. 

The fitness_N represents the fitness level of the current individual and the fitness_O is the 

fitness level of the best-evaluated individual.  

 

 𝑃[𝑖] = (1 − 𝐿𝑟)𝑃[𝑖] +  𝐿𝑟 ∗ (𝐵𝑒𝑠𝑡[𝑗][𝑖]) (3) 

 𝐿𝑟 =  𝐿𝑟 ×  
𝐹𝑖𝑡𝑛𝑒𝑠𝑠_𝑁

𝐹𝑖𝑡𝑛𝑒𝑠𝑠_𝑂
 

(4) 

 

2.2. Don’t Know Methodology 

 

 To accurately generate a 'Don't Know' response, the model needs to rule out the 

hypothesis that the abnormal event being analyzed is one of the accidents present in the model. 

This classification is challenging because it requires precisely defining when an abnormal event 

will be classified as an accident. If an event cannot be classified as any known accident, a 'Don't 

Know' response will be generated. Nicolau (2014) [3] proposed a methodology based on 

Voronoi diagrams to define the influence areas of accidents. 

Voronoi diagrams divide a plane into N regions, each represented by a centroid vector 

such that any point in a region is closer to its centroid than to any other. Implementing the 'Don't 

Know' response methodology involves determining the representative vectors for accidents 

using an optimization algorithm, in this case, was used the PBIL algorithm. Once the 

representative vectors are determined, the influence area of a centroid is defined as half the 

smallest distance between that vector and the others. This gives the influence radius of the 

accident. For an event to be classified as an accident, it must fall within this influence radius — 

the distance between the event and the centroid must be smaller than the influence radius. This 

methodology allows the model to classify abnormal events that fall outside the influence radius 

of any accidents as 'Don't know.' 

 

2.3. Objective Function (Fitness) 

 

 The use of the PBIL algorithm aims to find the centroid vector of the considered 

accidents. In this work, four operational conditions were considered: NORMAL (Normal 

operation condition), LOCA (Loss of Coolant Accident), MFWBR (Main Feed Water Break) 

and SGTR (Steam Generator Tube Rupture). The algorithm optimizes the number of correct 

identifications made by the representative vector, as illustrated in Fig. 3, where each space 

represents a centroid vector.  

 

                vector = … … … …  
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Fig. 3. Illustration of the centroid vector. 

 
 

 The representative vector is the optimized vector, with most right classifications, of 

events. The evaluation function, fitness, has two steps. First, the classification is made by the 

Euclidean distance of the centroid of accidents and the unknown event in process, classifying by 

the minimum distance. For step number two, to being considered a correct classification the 

abnormal event must be within the influence area of the accident.  

 This study utilized 59 seconds from the simulation made by Alvarenga (1997) [14] and 

four operation condition, the maximum number of correct classifications is 472, being 236 from 

step 1 and 236 from step 2, these 236 correct classifications are 59 from each accident. With the 

2-step classification, for an event to be classified as an occurrence of an accident, it should be 

within the influence area of the centroid vector of that accident. The events that are out of the 

influence area of all the centroids, will receive the Don’t Know Response, and will not count as 

a correct classification for the solution.  

 

2.4. Dataset Preparation 

 

 For this study, it was used the dataset from the simulation made by Alvarenga (1997) 

[14] for the PWR power plant of Angra 2, in Rio de Janeiro, Brazil. The dataset simulates the 

evolution of 18 plant variables over 61 seconds of some operational conditions for a PWR 

reactor at 100% power level. From the simulation of Alveranga, eight operational conditions 

were used in this work: NORMAL (normal operation), LOCA (Loss of Coolant Accident), 

MFWBR (Main Feed Water Break), SGTR (Steam Generator Tube Rupture), BLACKOUT 

(Loss of electrical power), MFWISO (Main Feed Water Isolation), STMLIBR (Steam Line 

Break) and MSTMISO (Main Steam Isolation). 

  To maintain consistency, all datasets were normalized using the MAX-MIN technique. 

This method involves using the maximum and minimum values of each plant variable to 

linearly scale the datasets within the [0,1] range, as shown in the Eq. 5. 

 

 𝑁(𝑥) =
𝑥 − min (𝑥)

max(𝑥) − min (𝑥)
 (5) 

 

2.5. Principal Component Analysis (PCA) 

 

 Principal Component Analysis (PCA) is a valuable technique in statistical signal 

processing, primarily used for reducing the dimensionality of datasets, which is beneficial for 

tasks such as pattern recognition, understanding, and interpreting data [11]. PCA was applied to 

reduce the dimensionality of the dataset by calculating the principal components, which are new 

variables formed by linear combinations of the original variables [10]. The purpose of applying 

PCA in this study was to determine which plant variables are more important for problem 

resolution. 

This methodology was previously introduced by de Souza (2024) [10], using PCA to 

extract the best plant variables by analyzing their contributions to forming the principal 

components. This method reduces the dimensionality from 17 plant variables to 4 plant 

variables. The plant variables selected by de Souza (2024) are presented in Tab. 1. 

 

Tab. 1. Plant variables selected using the PCA method proposed by de Souza, 2024. 
Number of Variable Name of Variable Unit 

8 Feedwater flow Kg/s 

10 Flow in the rupture Kg/s 

15 Nuclear Power % 
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17 Pressurizer level % 

 

2.6. Method validation 

 

 The methodology for PBIL_S and PBIL_N algorithms were developed in Python. The 

algorithms were used to find the representative vector for 4 accidents within the set of variables 

presents by the Tab. 1. The parameters for the algorithms are present in the Tab. 2. and Tab. 3. 

The set of parameters were used following experiments present in the literature [8]. 

Tab. 2. Parameters for PBIL_S experiment. 

Number of Population Learning rate 

50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150 0.001, 0.003, 0.01, 0.03, 0.05, 0.08 

Tab. 3. Parameters for PBIL_N experiment. 

Number of Population Learning rate Number of  Best Individuals  

50, 60, 70, 80, 90, 100, 110, 120, 

130, 140, 150 

0.001, 0.003, 0.01, 

0.005,0.007,0.01 
2,3,5 

  

After the parameter sensitivity test results of the algorithms, the best vector - the vector 

that achieves the maximum number of correct classifications in the fewest generations - from 

the best parameter group - which has the lowest average number of generations, will undergo 

testing for generating 'Don't Know' responses for the BLACKOUT, STMLIBR, MFWISO, and 

MSTMISO incidents. This testing will involve introducing 1%, 2%, and 5% noise in the data. 

The data noise will be applied in the vector, as if the centroid vector were moved a little.  

 

3. RESULTS AND DISCUSSION 

 

 Tab. 4. shows the classification results achieved by the PBIL_S algorithm. From the set 

of parameters listed in Tab. 2., a subset was selected for presentation in Tab. 4. The routine was 

executed 10 times, and the results shown represent the average generation at which the 

algorithm achieved the maximum number of correct classifications. 

Tab. 4. Results for PBIL_S experiment. 

Population Learning rate Average Number of generations 

50 

0.03 66.9 

0.05 43.1 

0.08 31.6 

100 

0.03 48.4 

0.05 38.5 

0.08 24.4 

150 

0.03 43.6 

0.05 30.7 

0.08 22 

Tab. 4. shows that as the population size and learning rate increase, the average number 

of generations decreases. This means that the algorithm can achieve the maximum number of 

classifications in fewer generations, resulting in lower computational cost. Tab. 5. Shows the 

classification results achieved by the PBIL_N algorithm. From the set of parameters listed in 

Tab. 3, a subset was selected for presentation in Tab. 5. The routine was executed 5 times, and 

the results shown represent the average generation at which the algorithm achieved the 

maximum number of correct classifications.  

Tab. 5. Results for PBIL_N experiment. 

Population 
Number of bests 

individuals 

Learning 

rate 

Average Number of 

Generations 

50 2 0.003 255.6 
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0.005 102.4 

0.01 100.6 

3 

0.003 190.4 

0.005 130.4 

0.01 69.8 

5 

0.003 151.2 

0.005 97.0 

0.01 53.4 

100 

2 

0.003 179.6 

0.005 135.6 

0.01 81.2 

3 

0.003 171.0 

0.005 94.4 

0.01 54.2 

5 

0.003 115.4 

0.005 70.4 

0.01 40.4 

150 

2 

0.003 167.0 

0.005 136.2 

0.01 65.2 

3 

0.003 118.4 

0.005 83.8 

0.01 56.6 

5 

0.003 106.4 

0.005 61.6 

0.01 38.2 

 

Tab. 5. shows that, like PBIL_S, an increase in population size and learning rate for 

PBIL_N allows the algorithm to achieve lower computational costs in finding a vector that 

maximizes the number of classifications. For PBIL_N, it is also evident that the reduction in 

computational cost is further influenced by increasing the number of N best solutions, reaching 

the lowest average number of generations at 38.2. Tab. 6. presents the experiment conducted 

with the best vector from the group of vectors that achieved the maximum number of 

classifications with the lowest average number of generations. For PBIL_S, this vector had a 

population size of 150 and a learning rate of 0.08. For PBIL_N, the vector had a population size 

of 150, a learning rate of 0.01, and an N value of 5. Tab. 7. provides a summary of the results 

presented in Tab. 6. In Tab. 7., it is provided the average accuracy for 1%, 2%, 5% and the 

mean accuracy.  

Tab. 6. Comparison between algorithms for Don’t Know Generation with data noise 

Data Noise 

Unknown 

Operation 

Condition 

Response 

operation 

condition 

Pbil_S 

Accuracy 

Pbil_N 

Accuracy 

COA 

Accuracy 

1 % 

LOCA LOCA 100 % 100 % 100 % 

MFWBR MFWBR 100 % 100 % 100 % 

SGTR SGTR 100 % 100 % 100 % 

NORMAL NORMAL 100 % 100 % 100 % 

BLACKOUT DON’T KNOW 100 % 100 % 100 % 

MSTMISO DON’T KNOW 100 % 100 % 100 % 

MFWISO DON’T KNOW 100 % 100 % 100 % 

STMLIBR DON’T KNOW 100 % 100 % 100 % 
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2% 

LOCA LOCA 100 % 100 % 100 % 

MFWBR MFWBR 100 % 100 % 100 % 

SGTR SGTR 100 % 100 % 100 % 

NORMAL NORMAL 100 % 100 % 100 % 

BLACKOUT DON’T KNOW 100 % 100 % 100 % 

MSTMISO DON’T KNOW 100 % 100 % 100 % 

MFWISO DON’T KNOW 100 % 100 % 100 % 

STMLIBR DON’T KNOW 100 % 100 % 100 % 

5 % 

LOCA LOCA 100 % 100 % 100 % 

MFWBR MFWBR 100 % 100 % 100 % 

SGTR SGTR 100 % 100 % 100 % 

NORMAL NORMAL 100 % 100 % 100 % 

BLACKOUT DON’T KNOW 100 % 100 % 100 % 

MSTMISO DON’T KNOW 100 % 100 % 100 % 

MFWISO DON’T KNOW 86 % (*) 100 % 98 % (*) 

STMLIBR DON’T KNOW 100 % 100 % 100 % 

(*) Was misclassified as MFWBR. 

Tab. 7. Resume of results from Tab. 6. 

Algorithm Data Noise Accuracy 

PBIL_S 

1 % 100 % 

2 % 100 % 

5 % 98,25 % 

Mean 99,42 % 

PBIL_N 

1 % 100 % 

2 % 100 % 

5 % 100 % 

Mean 100 % 

COA 

1 % 100 % 

2 % 100 % 

5 % 99,75 % 

Mean 99,92% 

Tab. 6. and Tab. 7. demonstrate that all algorithms find vectors that are robust to 

instrumentation error, defined here as up to 2% noise in the data. Particularly, only the vector 

found by PBIL_N shows resilience to 5% noise in the data achieving 100% accuracy, followed 

by the vector found by COA, achieving 99.75% accuracy under 5% data noise, and PBIL_S, 

achieving 98.25% accuracy. 

 

4. CONCLUSIONS 

 

This article explores the Population-Based Incremental Learning Algorithm's ability to 

address the Nuclear Accident Identification Problem (NAIP), building on the studies by de 

Souza et al. (2024). It implements a methodology for accident identification with the generation 

of 'Don't Know' responses based on nearest neighbor theory, enabling real-time diagnostic 

support systems. The variable set used was identified using Souza et al.'s 2024 method, which 

employs Principal Component Analysis for variable reduction. 

This study includes a sensitivity analysis of PBIL algorithm parameters in two 

variations of the algorithm, PBIL_S and PBIL_N, demonstrating both variants can tackle the 

NAIP. According to Tab. 4., Tab. 5. and findings by de Souza et al. (2024), PBIL_S can identify 

the vector with the lowest computational cost. Moreover, Tab. 6. and Tab. 7. show that PBIL_N 

can identify a vector less sensitive to data noise, achieving 100% accuracy even submitted to 
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5% data noise. The three algorithms shown in this work, PBIL_S, PBIL_N and COA, are 

capable of finding optimal results. The work shows the details in comparison when such 

algorithms are subjected to instrumentation error. With the results of this study, it is possible to 

say that the PBIL algorithm can find a better centroid vector than the COA algorithm in fewer 

generations, resulting in lower computational cost. 
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