

Id.: CR45

SIMULAÇÃO DE RESPOSTAS DE TLDS À RADIAÇÕES X E GAMA DE REFERÊNCIA USANDO O CÓDIGO MONTE CARLO PHITS

Yan D. Lacerda¹, Pedro I. C. P. Lacerda¹, Gabriela P. Cardoso², Marco A. S. Lacerda²

¹Univerdidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, 31270901 -Belo Horizonte, MG - Brasil

²Laboratorio de calibração de dosímetros (LCD), Av. Presidente Antônio Carlos, 6627, Pampulha, 31270901 - Belo Horizonte, MG - Brasil

vandl@ufmg.br

Palavras-Chave: Dosimetria das radiações; Método de Monte Carlo; Espectro de raios x; PHITS; MCNP

RESUMO

Detectores termoluminescentes (TLDs) são materiais cerâmicos que apresentam a propriedade de armazenar a energia da radiação ionizante e liberar essa energia, na forma de luz, quando são aquecidos. TLDs são muito úteis para monitoração individual e ambiental. Um dos materiais termoluminescentes mais populares é o fluoreto de lítio dopado com impurezas de Magnésio e Titânio (LiF:Mg,Ti). A resposta desses detectores pode variar com a energia da radiação, tornando-se necessário avaliar a resposta para diferentes espectros de energia. Essa resposta pode ser calculada usando códigos computacionais criados a partir do método de Monte Carlo (MMC). Neste trabalho foi utilizado especificamente o código de Monte Carlo PHITS (Particle and Heavy Ion Transport code System), na sua versão 3.33, para avaliar a resposta de TLDs de LiF:Mg,Ti produzidos pela RadPro International GnbH, conhecidos comercialmente como detectores MTS-N. Os resultados são comparados com outro trabalho de referência que utilizou o código computacional baseado no MMC, MCNPX (Monte Carlo N-Particle Extended). A resposta foi calculada para feixes monoenergéticos (20, 30, 40, 50, 60, 80, 100, 150, 200, 250 e 300 keV), feixes da série ISO (International Organization for Standardization): S-Cs, S-Co e de espectro estreito N (N-30, N-40, N-60, N-80, N-100, N-150, N-200, N-250, N-300), além de feixes da IEC (International Electrotechnical Commission) série RQR (RQR-2, RQR-3, RQR-4, RQR-5, RQR-6, RQR-7, RQR-8, RQR-9, RQR-10). As simulações foram feitas para cada feixe de fótons, avaliando a energia média depositada pelos fótons, por unidade de massa, em todo o volume do cristal de LiF (dimensões: 4,5 mm de diâmetro e 0,9 mm de espessura), e o kerma no ar, utilizando a mesma geometria, mas substituindo o cristal de LiF por ar. Assim, a resposta em energia R(E) e as respostas relativas ao ¹³⁷Cs e ⁶⁰Co foram calculadas. Todas as simulações foram realizadas com 5×10^8 histórias e uma energia de corte em 1 keV para elétrons e fótons. Para todas as simulações, os resultados encontrados apresentaram uma boa concordância com o estudo de referência feito com o código MCNPX, sendo as maiores diferenças verificadas para o kerma no ar no volume do cristal.

1. INTRODUÇÃO

A calibração de dosímetros de radiação é essencial e, por conta disso, é padronizada internacionalmente, para um manuseio seguro das fontes de radiação ionizantes. Assim a Agência Internacional de Energia Atômica (IAEA), junto de seus países membros, têm desenvolvido medidas e capacidades para a calibração, de modo a tornar a aplicação de radiações mais seguras [1][2][3][4][5]. A Comissão Internacional de Unidades e Medidas de Radiação (ICRU), define grandezas operacionais [6], que são utilizadas pela International Organization for Standardization (ISO), em sua norma BS ISO 4037-1 [7], para especificar os métodos e as características para a produção de radiação de referência na calibração de dosímetros. A Comissão Internacional de Eletrotécnica (IEC), também, define métodos para a geração de feixes de radiação padronizados, usados normalmente na determinação de características de equipamentos de raio X [8].

A resposta R de um detector é calculada pela razão do valor encontrado na medição pelo valor convencional da grandeza (exemplo: grandeza kerma no ar, K_a , ou equivalente de dose ambiente, H*(10)). Um detector sofre alterações na sua resposta dependendo da energia, *E*, e da distribuição angular da radiação ionizante incidente. É comum utilizar a resposta energética do detector, em termos do kerma no ar, normalizada a fótons gama de referência, r(E), dada pela equação 1. A norma BS EN ISO 62387 (2016) [9] especifica as condições de referência para testes de dosímetros usados para medida das grandezas Hp(10), H*(10) e Hp(0,07). A BS EN ISO 62387 [9] estabelece como referência, para a grandeza de influência energia da radiação, *E*, a qualidade S-Cs [7], que corresponde à energia da radiação gama emitida pelo radionuclídeo ¹³⁷Cs.

$$r(E) = \frac{\left(\frac{R}{K_a}\right)_E}{\left(\frac{R}{K_a}\right)_{Ref}}$$
(1)

É comum empregar materiais que possuem o fenômeno da termoluminescência, para medir a exposição a fontes de radiação ionizante, já que muitos desses materiais são amplamente comercializados. Existem diversos tipos de materiais termoluminescentes, os mais comuns são feitos a partir de fluoreto de lítio, como o TLD-100 e o MTS-N. Conhecer a resposta apresentada pelos TLDs é fundamental, já que estes são utilizados na prática para campos de radiação que possuem diferentes espectros de energia.

Simulações computacionais com códigos que empregam o método de Monte Carlo (MMC) são amplamente utilizados em dosimetria das radiações e podem contribuir de maneira positiva para a confiabilidade metrológica. Entre os códigos computacionais que utilizam este método, pode-se citar o MCNP (Monte Carlo N-Particle) [10] e o PHITS (Particle and Heavy Ion Transport code System) [11].

A resposta em energia, R(E), para um detector termoluminescente depende da eficiência TL intrínseca, $\eta_i(E)$, definida como a razão entre a energia emitida como luz visível durante o aquecimento do cristal e a energia absorvida durante a exposição à radiação ionizante. Ela pode ser estimada com a seguinte equação [12][13]:

$$\eta_i(E) = \frac{r(E)_{medido}}{r(E)_{simulado}}$$
(2)

Cardoso (2020) [13] determinou as eficiências intrínsecas de TLDs de LiF:Mg,Ti produzidos pela RadPro International GnbH, conhecidos comercialmente como detectores MTS-N, para feixes monoenergéticos (20, 30, 40, 50, 60, 80, 100, 150, 200, 250 e 300 keV), feixes da série ISO (International Organization for Standardization): S-Cs, S-Co e de espectro estreito N (N-30, N-40, N-60, N-80, N-100, N-150, N-200, N-250, N-300), além de feixes da IEC (International Electrotechnical Commission) série RQR (RQR-2, RQR-3, RQR-4, RQR-5, RQR-6, RQR-7, RQR-8, RQR-9, RQR-10). Para isso, as respostas simuladas foram obtidas com o código MCNPX.

O objetivo do presente trabalho é obter as respostas, r(E), com o código PHITS e comparar com as mesmas respostas obtidas por Cardoso (2020) [13].

2. METODOLOGIA

A metodologia para a determinação da resposta, r(E), com o código PHITS foi a mesma adotada por Cardoso (2020) [13], com o código MCNPX. No presente trabalho foi utilizado o código PHITS, em sua versão 3.33, com as bibliotecas de seção de choque padrões. Foram utilizadas 5×10^7 histórias de fótons. Fontes circulares de fótons, com 1,0 cm de diâmetro, foram posicionadas a 1,0 cm da superfície do volume sensível (cristal ou ar). As simulações foram realizadas para cada feixe de fótons, avaliando a energia média depositada, pelos fótons, por unidade de massa, em todo o volume do cristal de LiF (dimensões: 4,5 mm de diâmetro e 0,9 mm de espessura), e o kerma no ar, utilizando a mesma geometria, mas substituindo o cristal de LiF por ar. Foram simulados os mesmos feixes de radiação simulados por Cardoso (2020) [13]. Dados tabelados de espectros de radiação X de referência, publicados pelo Physikalisch-Technische Bundesanstalt (PTB), Alemanha, foram utilizados nas simulações das qualidades ISO e IEC.

3. RESULTADOS

A Tab. 1. mostra os valores de r(E), em termos do kerma no ar, K_a , normalizados para fótons gama do ¹³⁷Cs e ⁶⁰Co e para todas as demais qualidades estudadas. A Tab. 2. mostra uma comparação das respostas obtidas no presente trabalho com as obtidas por CARDOSO (2020) [13].

A Tab. 1 mostra que os valores de R(E) variaram de 0,926 a 0,182. As respostas relativas ao 137 Cs variaram de 0,999 a 1,276 e as respostas relativas ao 60 Co variaram de 1,000 a 1,277. Em todos os casos, os maiores valores encontrados foram para a qualidade N-40. Os menores valores foram encontrados para as maiores energias. Os valores de R(E) são menores que a unidade para feixes monoenergéticos com energias maiores ou iguais a 100 keV. É possível perceber que o R(E) também é menor que a unidade para a qualidade N-80, cuja energia efetiva é maior que 64 keV. Nas qualidades RQR, cujas energias efetivas são todas menores que 50 keV, os valores de R(E) são maiores que a unidade. A Tab. 1 mostra também que os valores de respostas relativas ao 137 Cs e 60 Co se aproximam da unidade, à medida que a energia efetiva aumenta. Para energias maiores ou iguais a 200 keV, os valores de r(E) são bem próximos da unidade (dentro de 0,7 %).

A Tab. 2 mostra que os valores de R(E) e r(E) para o 137 Cs concordaram com os valores obtidos por Cardoso (2020) dentro de 6,2 %, sendo o valor mais discrepante encontrado para a qualidade RQR-3. Para as qualidades N, as concordâncias foram dentro de 0,3 %. Para os feixes monoenergéticos, as concordâncias estão dentro de 0,9 % para 50 keV, 60 keV e feixes com energias maiores ou iguais a 100 keV.

Feixe	Energia	Energia Efetiva	Dose LiF	Dose Ar		r(E) ¹³⁷ Cs	r(E) ⁶⁰ Co					
	Média				R(E)							
(KeV) (KeV) (Gy/par) (Gy/par)												
		6617	2 695 12	2 07E 12	0.026	1 000	1.001					
60C-	1252	1252	5,08E-12	3,97E-12	0,926	1,000	1,001					
•• <u>Co</u>	1255	1255	6,32E-12	0,82E-12	0,926	0,999	1,000					
Nionoene		20	2.505.12	2 225 12	1 1 20	1 200	1 210					
20	20	20	2,50E-12	2,23E-12	1,120	1,209	1,210					
30	30	30	1,12E-12	9,90E-13	1,130	1,220	1,220					
40	40	40	1,41E-12	1,25E-12	1,133	1,223	1,224					
50	50	50	4,/1E-13	4,18E-13	1,126	1,216	1,217					
60	60	60	4,02E-13	3,72E-13	1,078	1,164	1,165					
80	80	80	4,18E-13	3,93E-13	1,064	1,148	1,149					
100	100	100	4,60E-13	4,75E-13	0,968	1,045	1,046					
150	150	150	7,17E-13	7,63E-13	0,939	1,014	1,015					
200	200	200	1,01E-12	1,09E-12	0,926	0,999	1,000					
250	250	250	1,33E-12	1,43E-12	0,929	1,003	1,004					
300	300	300	1,63E-12	1,76E-12	0,929	1,003	1,004					
IEC (2005	5)	1	i	i								
RQR 2	28,25	27	1,42E-12	1,28E-12	1,112	1,201	1,202					
RQR 3	32,35	27,4	1,15E-12	1,05E-12	1,094	1,181	1,182					
RQR 4	36,01	29,6	9,97E-13	8,59E-13	1,161	1,253	1,254					
RQR 5	39,36	31,6	8,94E-13	7,73E-13	1,156	1,248	1,249					
RQR 6	42,78	33,8	8,15E-13	7,09E-13	1,149	1,241	1,242					
RQR 7	45,96	35,9	7,56E-13	6,62E-13	1,143	1,233	1,234					
RQR 8	48,84	37,9	7,13E-13	6,27E-13	1,136	1,227	1,228					
RQR 9	53,87	42,1	6,56E-13	5,84E-13	1,122	1,211	1,212					
RQR 10	60,97	48,5	6,03E-13	5,48E-13	1,099	1,187	1,188					
ISO (2019	9)											
N-30	24,62	23,4	1,73E-12	1,49E-12	1,163	1,256	1,257					
N-40	33,27	31,8	9,52E-13	8,06E-13	1,182	1,276	1,277					
N-60	47,88	46,7	5,25E-13	4,61E-13	1,138	1,229	1,230					
N-80	65,19	64,1	3,99E-13	3,77E-13	1,058	1,142	1,143					
N-100	83,26	83,3	4,08E-13	4,09E-13	0,998	1,078	1,079					
N-150	118,2	120,5	5,49E-13	5,76E-13	0,953	1,029	1,030					
N-200	164,8	167,5	8,05E-13	8,59E-13	0,937	1,012	1,012					
N-250	207,3	211,5	1,06E-12	1,14E-12	0,933	1,007	1,007					
N-300	248.4	258,5	1,31E-12	1,41E-12	0.930	1,004	1,005					

Tab. 1. Resultados obtidos usando o código PHITS

.	R(E)	R(E)	E) $r(E)^{137}Cs$ $r(E)^{137}Cs$		Dif (%)	Dif (%)				
Feixe	PHITS	MCNPX	PHITS	MCNPX	R(E)	$r(E)^{137}Cs$				
Radionuclídeos										
¹³⁷ Cs	0,926	0,927	1,000	1,000	0,07	0,00				
⁶⁰ Co	0,926	0,926	0,999	0,999	0,04	-0,02				
Monoenergéticos										
20	1,120	1,137	1,209	1,227	1,48	1,45				
30	1,130	1,186	1,220	1,28	4,98	4,96				
40	1,133	1,170	1,223	1,263	3,28	3,28				
50	1,126	1,126	1,216	1,215	-0,01	-0,05				
60	1,078	1,078	1,164	1,164	-0,01	0,02				
80	1,064	1,004	1,148	1,084	-5,63	-5,62				
100	0,968	0,968	1,045	1,045	0,00	0,00				
150	0,939	0,940	1,014	1,015	0,08	0,11				
200	0,926	0,933	0,999	1,007	0,81	0,79				
250	0,929	0,931	1,003	1,005	0,17	0,17				
300	0,929	0,929	1,003	1,003	0,00	0,01				
IEC (2005)										
RQR 2	1,112	1,160	1,201	1,252	4,27	4,25				
RQR 3	1,094	1,162	1,181	1,254	6,17	6,14				
RQR 4	1,161	1,160	1,253	1,252	-0,08	-0,09				
RQR 5	1,156	1,155	1,248	1,247	-0,09	-0,07				
RQR 6	1,149	1,147	1,241	1,238	-0,19	-0,21				
RQR 7	1,143	1,144	1,233	1,235	0,12	0,12				
RQR 8	1,136	1,134	1,227	1,224	-0,20	-0,21				
RQR 9	1,122	1,130	1,211	1,220	0,69	0,70				
RQR 10	1,099	1,101	1,187	1,188	0,14	0,09				
ISO (2019)										
N-30	1,163	1,160	1,256	1,252	-0,27	-0,29				
N-40	1,182	1,181	1,276	1,275	-0,06	-0,05				
N-60	1,138	1,141	1,229	1,232	0,24	0,26				
N-80	1,058	1,057	1,142	1,141	-0,12	-0,12				
N-100	0,998	0,999	1,078	1,078	0,05	0,02				
N-150	0,953	0,954	1,029	1,030	0,09	0,11				
N-200	0,937	0,937	1,012	1,011	0,00	-0,05				
N-250	0,933	0,933	1,007	1,007	0,05	0,03				
N-300	0,930	0,931	1,004	1,005	0,06	0,06				

Tab. 2. Comparação das respostas entre PHITS e MCNPX

4. CONCLUSÃO

Os valores de resposta, R(E) e r(E) para o ¹³⁷Cs, obtidos com o código PHITS, concordaram com os valores obtidos por Cardoso (2020) dentro de 6,2 %, sendo o valor mais discrepante

encontrado para a qualidade RQR-3. As concordâncias foram dentro de 0,3 % para as qualidades N. Para energias maiores ou iguais a 200 keV, os valores de r(E) são bem próximos da unidade (dentro de 0,7 %), para as simulações realizadas com ambos os códigos.

As diferenças encontradas podem ser atribuídas a diferenças no algoritmo de transporte e bibliotecas de fótons e elétrons utilizados em ambos os códigos. As maiores discrepâncias devem ser investigadas, avaliando a adequabilidade do tally T-deposit para estimativa do kerma no TLD e no ar.

AGRADECIMENTOS

À FAPEMIG pela bolsa de Iniciação científica PIBIC/FAPEMIG.

REFERÊNCIAS BIBLIOGRÁFICAS

[1] International Atomic Energy Agency. Safety Reports Series 16: Calibration of Radiation Protection Monitoring Instruments. IAEA, Vienna (2000).

[2] International Atomic Energy Agency, Technical Reports Series 398: Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water, IAEA, Vienna (2000).

[3] International Atomic Energy Agency, Technical Reports Series 457: Dosimetry in Diagnostic Radiology: An International Code of Practice, IAEA, Vienna (2007).

[4] International Atomic Energy Agency, Technical Reports Series 469: Calibration of Reference Dosimeters for External Beam Radiotherapy, IAEA, Vienna (2009).

[5] International Atomic Energy Agency, The SSDL Network Charter, IAEA, Vienna (2018).

[6] International Commission on Radiation Units and Measurements, Report 85a: Fundamental Quantities and Units for Ionizing Radiation, ICRU, Bethesda (2011).

[7] International Organization for Standardization, ISO 4037-1: X and gamma reference radiation for calibrating dosemeters and dose rate meters and for determining their response as a function of photon energy, Part 1: Radiation characteristics and production methods, ISO, London (2019).

[8] International Electrotechnical Commission, IEC 61267: Medical diagnostic X-ray equipment: Radiation conditions for use in the determination of characteristics, ed. 2, IEC, Geneva (2005).

[9] International Organization for Standardization, BS EN ISO 62387:Passive integrating dosimetry systems for individual, workplace and environmental monitoring of photon and beta radiation, ISO, London (2016).

[10] BRIESMEISTER, J. F. "MCNP: a general Monte Carlo N-particle transport code, version 4C", Los Alamos National Lab, USA (2000).

[11] Iwase H. et al., "Development of general-purpose particle and heavy ion transport Monte Carlo code", J Nucl Sci Technol (2002).

[12] EAKINS, J. S., The Design of the New HPA Personal Thermoluminescence Dosemeter. Centre for Radiation, Chemical and Environmental Hazards. Health Protection Agency

(HPA), Centre for Radiation, Chemical and Environmental Hazards, HPA-CRCE-007 (2010).

[13] G. P. Cardoso, Simulação Monte-Carlo e Medidas Experimentais da Resposta do Detector MTS-N a Fótons de Radiação X e Gama, Dissertação, Centro de Desenvolvimento de Energia Nuclear, Brasil (2020).