

Id.: CR94

USO DE RESÍDUO DA MINERAÇÃO DE AREIA PARA SORÇÃO DE CÉSIO

Juniara L. Versieux¹, Carolina B. Freire¹, Fernando S. Lameiras¹, Jakeline P. de Carvalho¹, Liliani P. T. Nazareh¹

Centro de Desenvolvimento da Tecnologia Nuclear- CDTN, Antônio Carlos nº 6.627. Campus da UFMG – Pampulha. CEP: 31270-901 – Belo Horizonte – MG Juniara.lversieux@gmail.com

Palavras-Chave: Resíduo, Rejeito, Sorção.

RESUMO

Apesar de desempenhar um papel crucial tanto no desenvolvimento econômico, quanto na construção civil, a mineração de areia, não está isenta de impactos ambientais negativos. Um grande volume dos resíduos gerados é essencialmente composto por caulinita e quartzo. Analogamente, há geração de rejeitos radioativos de diversas fontes, principalmente advindos das aplicações de técnicas nucleares e usinas nucleares. O metacaulim pode ser usado ativamente para remover e recuperar íons U(VI) do minério de urânio [6]. Trabalhos como de [7] demonstraram eficiência de adsorção de urânio de 51% para metacaulinita e 32% para caulinita, comprovando que a estrutura amorfa (metacaulinita), oferece mais áreas ativas para interagir com os íons ou moléculas presentes, facilitando a captura e retenção dos elementos. Objetivando analisar a capacidade de sorção de Césio a partir do resíduo da extração de areia da empresa Gerais Mineradora, no município de Inhaúma-MG, foi utilizado o resíduo calcinado e in natura, sendo os melhores resultados, encontrados para o calcinado. Para conduzir este estudo, o resíduo foi reduzido por 240s com frequência de 160,7 rpm em moinho de barras e realizadas caracterizações do resíduo para análise quantitativa e qualitativa, sendo submetido aos testes FTIR (Espectroscopia no Infravermelho com Transformada de Fourier), DRX (Difração de Raios X), FRX (Fluorescência de Raios X) e análise granulométrica com BET (Brunauer, Emmett and Teller). Foram realizados testes de sorção de césio (utilizando CsCl inativo) pelo método de equilíbrio em batelada conforme procedimentos descritos na EPA 530 [3] em que o resíduo foi utilizado como soluto. Para o resíduo calcinado, foram realizadas as três etapas do ensaio, nas quais foram controlados temperatura, agitação e pH. Primeiramente foi definida a melhor relação soluto:solução. Após os resultados da primeira etapa, foi determinando o melhor tempo de equilíbrio e após análises de resultados, determinada a capacidade adsortiva do resíduo. Foi constatado que o processo de moagem como satisfatório para adequar o tamanho dos grãos, favorencendo a área superficial disponível para reatividade do material. Foi possível identificar que o resíduo utilizado tem como constituínte, dentre outros, a caulinita e muscovita, possuindo características que favorecem a sorção. Através da análise térmica, foi possível estabelecer a faixa de temperatura em que o material adquiriu composição química definida e constante, assim como as faixas onde houve reações de desidratação e desidroxilação do resíduo. Também foi constatado que o resíduo calcinado é promissor na sorção de Césio pelos resultados encontrados nas etapas realizadas e analisadas.

1. INTRODUÇÃO

Em mineradoras de areia, os resíduos são depositados em diques e bacias de decantação, resultando num elevado custo operacional associado a diminuição da vida útil da jazida, além do impacto ambiental causado por esse tipo de atividade [2]. Grande parte dos resíduos gerados, são essencialmente sílico/argilosos, compostos principalmente de caulinita e quartzo. Uma maneira de reduzir os problemas causados pelos resíduos é a sua utilização como matéria-prima para novos produtos, possibilitando a conservação de recursos naturais e permitindo um projeto sustentável.

Do mesmo modo, sabe-se que a radiação e as substâncias radioativas possuem muitas aplicações que são extremamente importantes para o ser humano, como a geração de energia

elétrica, aplicações na medicina, indústria de alimentos, meio ambiente, agricultura dentre outras. No entanto, com a utilização de materiais radioativos tem-se a geração de rejeitos radioativos que devem ser devidamente tratados e armazenados. Existem várias abordagens que podem ser usadas para tratar fluxos de rejeitos radioativos, como coagulação, troca iônica, filtração por membrana e adsorção [5]. A técnica de adsorção tem atraído a atenção de muitos autores devido ao seu baixo custo, simplicidade e alta eficiência [8].

Neste trabalho, pretendeu-se utilizar o resíduo da extração de areia da mineradora Gerais Mineração, no município de Inhaúma em Minas Gerais. Foi utilizado o resíduo in natura e calcinado como uma proposta de tratamento de rejeitos radioativos. As motivações para esse estudo foi utilizar alto percentual de resíduo, de tal forma a diminuir o volume estocado nas bacias de decantação da mineradora, agregar valor aos resíduos como matéria-prima, produzir um novo material para sorção de material radioativo também compatível com materiais orgânicos e contribuir, portanto, para que o material passe a ser uma matéria-prima significativa como sorvente de rejeitos radioativos. Os resultados foram avaliados por tratamentos estatísticos e isotermas de sorção.

2. METODOLOGIA

O resíduo foi recebido em forma granulada e processado em um moinho de barras com 10 barras, operando a uma rotação de 160,7 rpm por 240 segundos. Após a moagem, o material foi homogeneizado e quarteado para as etapas subsequentes de caracterização e calcinação. Os parâmetros da moagem foram definidos de acordo com as experiências dos autores em testes de laboratório.

Objetivando analisar a composição mineralógica, granulométrica, área superficial e comportamento térmico, a fim de constatar se o produto possuía as características físico-químicas ideais para aplicações, foram submetidos a ensaios de FTIR (Espectroscopia na Região do Infravermelho por Transformada de Fourier), DRX (Difração de raios-X), FRX (Fluorescência de raios X), análise granulométrica com BET, análise térmica e teor de umidade.

O ensaio de sorção seguiu o método descrito em EPA 530 (Environmental Protection Agency) [3] pelo fato de que este método fornece diretrizes rigorosas para garantir a segurança e a precisão nas análises de resíduos perigosos. A EPA 530 estabelece procedimentos padronizados para o tratamento, armazenamento e caracterização de resíduos, especialmente aqueles que podem ter um impacto ambiental severo, como os radioativos. Assim sendo, foi definida: a razão resíduo: solução, determinação do tempo de equilíbrio e, por último (terceira etapa do ensaio), a construção das curvas de sorção. Nas três etapas a temperatura, a agitação e o pH foram controlados. A primeira e a segunda etapa foram realizadas com o resíduo calcinado (pelos autores, em uma temperatura de 800 °C com uma taxa de 10°/min por 4h) e não calcinado no qual foram definidos os parâmetros razão resíduo: solução e tempo de equilíbrio, respectivamente. Na terceira etapa foi determinado o melhor ajuste de isoterma para análise dos resultados. A Fig. 1 apresenta o resíduo utilizado no ensaio de sorção.

Fig. 1:. (a) resíduo não calcinado; (b) resíduo calcinado.

O equipamento utilizado para a agitação das amostras foi o agitador rotatório disponível no LABCIM (Laboratório de Cimentação do CDTN), representado na Fig.2 que foi construído de acordo com os critérios recomendados em EPA 530 [3].

Fig. 2: agitador rotatório disponível no LABCIM.

Na Tab.1, apresentam-se as razões resíduo: solução testadas. Para cada material em análise, foi utilizado um volume de solução de 200 ml. De acordo com a EPA 530 [3], são recomendadas razões que variam de 1:4 a 1:500 (1:4, 1:10, 1:20, 1:40, 1:60, 1:100, 1:200, 1:500 respectivamente).

Resíduo não	calcinado	Resíduo Calcinado				
Identificação dos* frascos	Massa do resíduo utilizada (Mu) (g)	Identificação** dos frascos	Massa do resíduo utilizada (Mu) (g)			
1A1	50,52	1CA1	50,40			
1A2	20,21	1CA2	20,16			
1A3	10,10	1CA3	10,08			
1A4	5,05	1CA4	5,04			
1A5	3,33	1CA5	3,33			
1A6	2,02	1CA6	2,02			
1A7	1,01	1CA7	1,01			
1A8	0,40	1CA8	0,40			
*1A1: 1- 1ª Etapa; A- Amostra resíduo não calcinado- 1- Razão 1 **1CA1: 1- 1ª Etapa; C- Resíduo calcinado; A- Amostra; 1- Razão 1.						

Tab. 1: Razões resíduo: solução- 1ª Etapa.

Para cada razão preparou-se também um branco, contendo apenas a solução cloreto de césio, sem contato com o resíduo, que foi agitado e filtrado nas mesmas condições dos ensaios das razões. Esses sistemas ficaram sob agitação constante (29 ± 2) rpm, durante $(24 \pm 0,5)$ h, a temperatura de (25 ± 3) °C. O pH do sistema foi medido antes e após a agitação, em seguida a fase sólida foi separada da fase líquida por filtração à vácuo, utilizando uma membrana filtrante de celulose com 0,45µm de abertura do poro. Para análise do filtrado, foi utilizada a técnica de Fluorescência de raios X por energia dispersiva utilizando um espectrômetro THERMO, para as três etapas do ensaio.

Na segunda etapa do ensaio, foi determinado o tempo ideal de equilíbrio para o ensaio. A razão selecionada na 1^a etapa com seu respectivo branco, foram colocados sob agitação em tempos distintos de contato (1, 24, 48 e 72 horas). A agitação de (29 ± 2) rpm e a temperatura ambiente foram monitoradas, assim como na primeira etapa. Após cada intervalo de tempo, os sistemas resíduo-solução foram retirados da agitação e filtrados para a separação de fases por filtração à vácuo, utilizando o mesmo equipamento da primeira etapa. Ao final da filtração, as amostras foram encaminhadas para análise por Ativação Neutrônica, para determinação da concentração de Cs⁺. A técnica utilizada foi definida devido ao fato que, especialmente quando se trata da detecção e quantificação de elementos em uma amostra é uma técnica de alta sensibilidade, precisão e exatidão, de acordo com resultados analisados em testes realizados neste estudo. Em seguida, para cada intervalo de tempo, foi calculada a variação de concentração entre o soluto no tempo t₁ (C₁) e a concentração do soluto após agitação, no tempo t₂ (C₂).

A terceira etapa foi realizada para o resíduo calcinado e adotou-se o tempo de agitação no qual a variação na concentração do soluto fosse igual ou inferior a 5% para o intervalo de 24 h, ou seja, até que a concentração estivesse praticamente estável. Na terceira etapa foi construída a isoterma de sorção. As isotermas foram traçadas pelo método CSI – em que a concentração do sorvente (resíduo) é constante e varia-se a concentração do soluto (césio) – método razão constante. A razão foi aquela selecionada na primeira etapa e o tempo de equilíbrio o selecionado na segunda etapa.

De acordo com EPA 530 [3], são recomendadas em torno de oito diluições para a construção da curva de adsorção e nesta etapa as soluções devem ser preparadas uma a uma a fim de evitar a propagação de erros. A Tab. 2 mostra as concentrações iniciais aproximadas, as quais foram preparadas para cada diluição para realização da terceira etapa.

Código da amostra *	Número da diluição	Concentração da solução de Cs+ (mg. L ⁻¹)
3AD1C	1	340
3AD2C	2	170
3AD3C	3	110
3AD4C	4	80
3AD5C	5	70
3AD6C	6	40
3AD7C	7	20
3AD8C	8	10
* 3AD1C: 3- 3ª etapa; A	A- amostra; D1- dilui	ção 1; C- resíduo calcinado.

Tab. 2: Concentrações de solução de Cloreto de Césio para realização da terceira etapa.

A partir dos resultados obtidos (concentração de Cs^+ em solução estoque (C_0) nas amostras (C) e no branco (C_B), as isotermas de sorção (x/m versus C) foram traçadas.

2. RESULTADOS

2.1. Resultados das caracterizações do resíduo

De acordo com os resultados da FRX, foi calculada a razão molar de SiO_2/Al_2O_3 sendo encontrado o valor de 3,04:1. A relação $SiO_2 + Al_2O_3 + Fe_2O_3$ também importante, quando essa relação é maior que 80%, o material é classificado como material de reatividade média [4]. O valor dessa relação para o resíduo utilizado neste trabalho foi de 83,88%.

Através do FTIR, foi possível constatar bandas que identificam o resíduo composto por aluminossilicato. Foram identificadas, bandas característica da Caulinita e indicou presença da Muscovita, que é um mineral filossilicato cuja composição é KAl₂(Si₃AlO₁₀) (OH)₂. Os resultados para análise granulométrica, demonstrou material com diâmetro médio do resíduo de 16,79µm e os resultados para BET indicaram o valor de 11,65m²/g para área superficial específica e uma área superficial total de 24,26 m²/g.

De acordo com a DRX, verificou-se que o resíduo possui aluminossilicato proveniente não somente da caulinita, mas também da muscovita, o que pode ser observado nas análises anteriores. Também foi observado através da difração, que dentre outros componentes presentes na composição do resíduo, estão presentes goethita e quartzo.

O teor de umidade determinado foi de 7,05%.

2.2. Resultados para o ensaio de sorção

Durante a primeira etapa, para as razões 1:100, 1:200 e 1:500 o pH medido foi entre 6 e 7, e para as razões 1:20, 1:40 e 1:60, o pH foi entre 8 e 9 para os resíduos calcinado e não calcinado.

De acordo com a norma, a melhor razão é aquela que apresenta %A de 10 a 30%. Desta forma, foi escolhida a razão 1:40 para ambos os resíduos, por apresentar a capacidade de sorção mais próxima do limite recomendado, de acordo com a Fig. 3.

	Resíduo	o calcinad	0		Resíduo não	calcinado)
Código da amostra	Razão soluto: solução (g:ml)	Cs ⁺ (mg,l ⁻¹)	Capacidade de sorção (%A)- FRX	Código da amostra	Razão soluto: solução (g:ml)	Cs+ (mg.l-1)	Capacidade de sorção (%A)
1CA1	1:04	241	41,65	1A1	1:04	140	61,11
1CA2	1:10	284	37,29	1A2	1:10	205	43,37
1CA3	1:20	355	27,97	1A3	1:20	240	28,14
1CA4	1:40	287	28,25	1A4	1:40	276	30,13
1CA5	1:60	345	15,44	1A5	1:60	304	22,25
1CA6	1:100	286	2,39	1A6	1:100	289	16,71

Tah 3.	Resultados	da	nrimeira	etana	nara o	resíduo	calcinado	e não	calcinado
1 aU.J.	Resultados	ua	princia	etapa	para 0	restuuo	calcinauo	e nao	calcinauo

1CA7	1:200	351	1,15	1A7	1:200	341	14,11
1CA8	1:500	313	2,74	1A8	1:500	369	54,00

Através das análises dos resultados da segunda etapa, o tempo de contato selecionado para o resíduo calcinado, para a continuação do ensaio de equilíbrio em batelada foi de 48h, pois a $\%\Delta C$ é menor que 5%, conforme recomendado pela EPA 530 [3] e, de acordo com a Fig.4 (após análise dos resultados por meio da FRX), a variação da concentração do soluto foi praticamente estável nesse intervalo.

Os resultados da segunda etapa para o resíduo não calcinado não foram satisfatórios, o que já era esperado pelo baixo grau de amorfização do material. Assim sendo, decidiu-se a não continuar com o ensaio de sorção com o resíduo não calcinado.

Após a terceira etapa do ensaio, a capacidade de adsorção do resíduo calcinado estudado foi determinada a partir dos resultados da concentração de césio no filtrado (C) e da quantidade de césio que foi adsorvido (x/m) pelo resíduo. Assim sendo, foi traçada a isoterma de sorção, que representa a capacidade de adsorção de césio pelo resíduo calcinado.

Foram feitos os ajustes de Freundlich e Langmuir para os resultados do resíduo. O melhor ajuste se deu utilizando a equação de Langmuir que está apresentado na Fig. 5 e de acordo com o ajuste feito, o comportamento da isoterma está condizente com um ajuste linear. O comportamento linear é frequentemente observado nos casos em que os sítios disponíveis para sorção são superiores à concentração da espécie química na solução [9].

Fig. 4: Ajuste de Langmuir - Resíduo Calcinado

Os parâmetros de Langmuir e para a regressão linear, estão apresentados na Tab. 3 e Tab. 4 respectivamente.

Tab. 5: Parametros para C) ajuste de Langmuir- R	esiduo 5 Lote					
Parâmetros de Langmuir							
$K_{L}(L.g^{-1})$	M (mg. g ⁻¹)	R ²					
6,67.10-2	1,29	97,5					

Tab. 3: Parâmetros para o ajuste de Langmuir- Resíduo 5º Lote

Tab.	4: Par	âmetros	para a	regressão	linear	do	ajuste	de	Langmuir-	Resíduo	5° Lo	ote
------	--------	---------	--------	-----------	--------	----	--------	----	-----------	---------	-------	-----

	Erro padrão	Coef	P- value	Regressão- F	F de significação
C (mg. L-1)	4,42	11,66	0,05	155,73	0.00024

O coeficiente de regressão linear (\mathbb{R}^2) foi maior que 97%, indicando que após de uma série de medidas experimentais, o modelo de Langmuir representa uma boa interpretação dos dados de sorção de césio para o resíduo calcinado. Além disso o valor de P foi menor que o nível de significância e o módulo de F calculado foi significativamente maior que o F crítico (F de significação) o que indica que a análise foi estatisticamente significativa. De acordo com a literatura, o modelo de Langmuir considera que a superfície de sorção é homogênea em que a sorção de moléculas do soluto acontece sob uma única camada na superfície do sólido. O parâmetro M representa a concentração de soluto sorvido, sendo a capacidade máxima de sorção para essa monocamada. O parâmetro K_L é uma medida de afinidade do adsorvato pela superfície do adsorvente que foi o resíduo calcinado. A capacidade de máxima de sorção está coerente com os valores encontrados por [1] em que foi medida a capacidade de adsorção de Césio pela bentonita.

De acordo com a descrição da Isoterma de Langmuir, há um equilíbrio entre o processo de adsorção e dessorção, em que nessa condição, as partículas adsorvem na mesma proporção que dessorvem ao longo do tempo, ou seja, a probabilidade de adsorver ou dessorver sobre um sítio vazio é a mesma. Embora, empiricamente é sabido que um sítio mais exposto, a capacidade de dessorção é maior. E o fato de se ter mais vizinhos entre os sítios, faz com que as moléculas se ligam mais fortemente.

4. CONCLUSÃO

O processo de moagem foi satisfatório para adequar o tamanho dos grãos, favorencendo a área superficial disponível para reatividade do material. Foi possível identificar que o resíduo utilizado tem como constituínte, dentre outros, a caulinita e muscovita, possuindo características que favorecem a sorção. Através da análise térmica, foi possível estabelecer a faixa de temperatura em que o material adquiriu composição química definida e constante, assim como as faixas onde houve reações de desidratação e desidroxilação do resíduo.

Foi possível verificar que o resíduo calcinado é promissor na sorção de césio pelos resultados encontrados nas etapas realizadas e analisadas com razão 1:40 em relação ao soluto: solvente e o tempo de equilíbrio de 48h.

AGRADECIMENTOS

À CAPES e ao INCT Midas pelo patrocínio das bolsas de estudo e pelo incentivo na compra de materiais para realização dos ensaios.

REFERÊNCIAS BIBLIOGRÁFICAS

- [1] D. M. M. dos Santos, Cesium transport through Brazilian bentonite to be used as reference material for surface repository barriers, 2021.
- [2] D. Pinho e L. M. Sant'agostino. Avaliação tecnológica de finos de mineração de areia para aplicação como pozolanas. Recursos minerais e desenvolvimento socioeconômico, 2004.
- [3] EPA, *Environmental protection agency*, 530 SW-87-006-F: Technical Resource Document: Batch-type Procedures for estimating soil adsorption of chemical (1992).
- [4] G. G. N. da Rocha, Caracterização microestrutural do metacaulim de alta reatividade. 2005.
- [5] IAEA, Technical Data Serious No. 1579, International Atomic Energy Agency, Vienna (2007).
- [6] J. R. Memon, et al., Evaluation of sorption of uranium onto metakaolin using X-ray photoelectron and Raman spectroscopies. Analytica Chimica Acta, 631(1), 69–73. https://doi.org/10.1016/j.aca.2008.10.017. 2009.

- [7] M. H. TAHA. et al. Uranium sorption from commercial phosphoric acid using kaolinite and metakaolinite. Journal of Radioanalytical and Nuclear Chemistry, v. 317, p. 685-699 (2018).
- [8] M. R. EL-NAGGAR e M. AMIN, Impact of alkali cations on properties of metakaolin and metakaolin/slag geopolymers: Microstructures in relation to sorption of 134Cs radionuclide. Journal of hazardous materials, v. 344, p. 913-924 (2018).
- [9] M. R. Soares, Coeficiente de distribuição (KD) de metais pesados em solos do estado de São Paulo. 2004. Tese (Doutorado em Agronomia: solos e nutrição de plantas). Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, USP, Piracicaba, São Paulo, 2004.