

Id.: EN-14

CÁLCULO DA FUNÇÃO J(ξ, β) CONSIDERANDO UMA FORMULAÇÃO ANALÍTICA Q-DEFORMADA PARA A FUNÇÃO DE ALARGAMENTO DOPPLER

Johann Alexandre R. Cunha¹, Alexandre José M. Antunes², Guilherme Guedes de Almeida³, Marcelo V. da Silva¹, Lucile Daniel Moreira¹, Anderson Patrício Resende¹, Daniel Artur P. Palma⁴, Giovanni L. de Stefani¹

¹ Universidade Federal do Rio de Janeiro (Av. Horácio Macedo 2030, Bloco G, sala 206, Rio de Janeiro, RJ, Brasil.)

² Intercultural Brasil-China – SEEDUC/RJ (Av. Pref. Silvio Picanço, s/ n^{o} - Charitas, Niterói - RJ)

³ Centro Federal de Educação Tecnológica Celso Suckow da Fonseca – CEFET/RJ (Av. Governador Roberto Silveira, 1900, 28635-000, Prado, Nova Friburgo.)

⁴ Comissão Nacional de Energia Nuclear – CNEN (R. Gen Severiano, 90 – Botafogo, Rio de Janeiro – RJ – RJ, 22290-040)

aantunes.ajm@gmail.com

Keywords: Expressão assintótica, Função de Alargamento Doppler, Distribuição de Tsallis

RESUMO

Uma das maiores dificuldades em se obter uma expressão analítica para a função $J(\xi,\beta)$ é sua dependência explícita da função de alargamento Doppler $\psi(x,\xi)$. O objetivo deste artigo é apresentar um método para o cálculo rápido e preciso da função $J(\xi,\beta)$ com base nos recentes avanços no cálculo da função de alargamento Doppler, considerando uma formulação analítica da Função de Alargamento Doppler de Tsallis $\psi_q(x,\xi)$ e uma análise sistemática de seu integrando. A metodologia proposta utiliza uma formulação analítica baseada em expansões assintóticas para o cálculo de $\psi_q(x,\xi)$. Os resultados que serão representados neste artigo são tabelas com valores para a função $J(\xi,\beta)$ utilizando o método proposto no cálculo para a formulação analítica da função de alargamento Doppler de Tsallis. Os resultados obtidos necessitam de validação posterior, que será explicada no decorrer do trabalho.

1. INTRODUÇÃO

A análise de um reator nuclear nos mostra que o cálculo das taxas de absorção ressonante não é uma tarefa trivial. Essa afirmação é baseada no fato de que a análise física do problema deve levar em consideração as variações de energia dos nêutrons, o comportamento ressonante da seção de choque do núcleo, a variação do fluxo de nêutrons na presença do núcleo absorvedor, o efeito de auto-blindagem espacial que impedem a penetração dos nêutrons em regiões mais profundas do combustível [1], entre outros fenômenos [2]. Para determinar as taxas de reação em uma estrutura de alguns grupos de energia, é necessário determinar o fluxo de nêutrons com precisão em regiões onde os isótopos absorvedores são encontrados. O método exato para se realizar tal tarefa é através da solução numérica da equação de transporte de nêutrons nessas regiões. Como a solução numérica dessa equação é bastante trabalhosa e ela usualmente é implementada como uma função de referência, se torna mais interessante determinar as taxas de reação através de aproximações baseadas em integrais de ressonância. [3].

A integral de ressonância é definida de forma que quando multiplicada pelo fluxo que é assintótico à ressonância, ela vai reproduzir a taxa de reações dentro dela. A forte característica heterogênea de reatores térmicos é outro fator complicador para se calcular a integral de ressonância, além disso o movimento de agitação térmica dos núcleos deve ser levando em conta para esse cálculo, portanto é necessário considerar o fenômeno de Alargamento Doppler das ressonâncias. A dificuldade em se calcular analiticamente integrais de ressonância, consiste no fato de que em um meio homogêneo ela é proporcional a função J(ξ , β), definida como [2]:

$$J(\xi,\beta) = \int_0^\infty \frac{\psi(x,\xi)}{\psi(x,\xi) + \beta} dx,$$
(1.1)

onde

 $\psi(x,\xi) = \frac{\xi}{2\sqrt{\pi}} \int_{-\infty}^{+\infty} \frac{dy}{1+y^2} \exp\left[-\frac{\xi^2}{4}(x-y)^2\right],$ (1.2)

é a Função de Alargamento Doppler já bem estabelecida na literatura, $x \in \xi$ são obtidos a partir dos parâmetros nucleares de ressonância:

$$x = \frac{2\left(E - E_0\right)}{\Gamma},\tag{1.3}$$

$$\xi = \frac{\Gamma}{\left(4E_0 kT/A\right)^{1/2}},$$
(1.4)

e

$$\beta = 2^j \times 10^{-5}, 0 \le j \le 31.$$
(1.5)

É fato que expressões funcionalmente complexas para a Função de Alargamento Doppler impossibilitam determinar precisamente expressões analíticas para a função $J(\xi, \beta)$ e consequentemente as integrais de ressonância. O objetivo deste trabalho é apresentar um método para o cálculo de $J(\xi, \beta)$ considerando expressões analíticas para $\psi_q(x, \xi)$ apresentadas na próxima seção. Na operação de reatores convencionais do tipo PWR, a distribuição de Maxwell-Boltzmann [4] se mostrou suficiente para a descrição física das interações nêutron-núcleo na seção de choque microscópica. Trabalhos recentes como [5] se propuseram a obter generalizações para $\psi(x, \xi)$, que é obtida a partir da estatística de Boltzmann-Gibbs, da qual se origina a Distribuição de Maxwell-Boltzmann. Essas generalizações possibilitam extender o domínio da aplicabilidade da Distribuição de Maxwell-Boltzmann para situações fora do equilíbrio térmico. Uma das formas de se obter expressões generalizadas, é através de expressões conhecidas como q-deformadas, advindas de formulações obtidas através da Distribuição de MaxwellBoltzmann que permite variar o comportamento da curva gaussiana característica dessa função, com isso é possível deformar essa curva e fazer ajustes para contemplar situações onde ocorram desvios em relação

a uma distribuição maxwelliana. No contexto de Física de Reatores é sabido que para sistemas que apresentam interação de longo alcance [7][8], e correlações temporais de longa duração [9], a Distribuição de Maxwell-Boltzmann pode se tornar inadequada, o que evidencia a necessidade de se obter versões generalizadas para $\psi(x,\xi)$. Este trabalho tem como objetivo aplicar tais generalizações para o cálculo de $J(\xi,\beta)$.

2. METODOLOGIA

Em [5] foi formulada uma nova expressão para a Função de Alargamento Doppler considerando a Distribuição de Tsallis, Eq. (2.1), a qual será utilizada neste trabalho, dada por:

$$\psi_q(x,\xi) = \frac{\xi}{2\sqrt{\pi}} B_q \int_{x-x_q}^{x+x_q} \frac{1}{1+y^2} \operatorname{iexp}_{2-q} \left[-\frac{\xi^2}{4} (x-y)^2 \right] dy,$$
(2.1)

onde

$$B_q = \frac{1}{4}(q-1)^{1/2}(3q-1)(1+q)\frac{\Gamma\left(\frac{1}{2} + \frac{1}{q-1}\right)}{\Gamma\left(\frac{1}{q-1}\right)},$$
(2.2)

$$x_q = \frac{2}{\xi\sqrt{q-1}},\tag{2.3}$$

$$\operatorname{iexp}_{2-q}(\alpha) = \frac{1}{q} \left[1 + (q-1)\alpha \right] \operatorname{exp}_{2-q}(\alpha),$$
(2.4)

e

$$\exp_{2-q}(\alpha) = [1 + (q-1)\alpha]^{\frac{1}{q-1}}.$$
(2.5)

O integrando da Eq. (2.1) é uma expressão de difícil tratamento e, normalmente, eram utilizados métodos numéricos para realizar sua avaliação. Os autores desenvolveram uma solução analítica para $\psi_q(x,\xi)$ em 2022 [10], [11]. Essa aproximação consiste em reescrever a integral de $\psi_q(x,\xi)$ na forma de uma equação diferencial dada por:

$$\frac{d^2}{dx^2}\psi_q(x,\xi) + \xi^2 qx \frac{d}{dx}\psi_q(x,\xi) + \frac{\xi^2 q}{4} \left(\xi^2 qx^2 + \xi^2 q + 2\right)\psi_q(x,\xi) = \frac{\xi^4 q^2}{4},$$
(2.6)

sendo as condições iniciais:

$$\psi_q(0,\xi) = {}_2F_1\left(1,\frac{1}{2},\frac{1}{q-1}+\frac{5}{2},-\frac{4}{\xi^2(q-1)}\right),\tag{2.7}$$

3

e

$$\frac{\partial}{\partial x} \left[\psi_q(0,\xi) \right] = 0. \tag{2.8}$$

Resolvendo essa equação diferencial e a reescrevendo em sua forma canônica para se obter a solução homogênea, e depois utilizando o método de variação de parâmetros, a seguinte expressão, Eq. (2.9), foi obtida pelos autores:

$$\begin{split} \psi_{q}(x,\xi) &= \frac{\xi\sqrt{q}\sqrt{\pi}}{2} \exp\left[-\frac{\xi^{2}q}{4} \left(x^{2}-1\right)\right] \left\{\cos\left(\frac{\xi^{2}qx}{2}\right) \times \right. \end{split}$$

$$&\times \left[\Re(\phi(\xi,x)) + \operatorname{erf}\left(\frac{\xi\sqrt{q}}{2}\right) + \frac{2}{\sqrt{q}\sqrt{\pi}} \exp\left(-\frac{\xi^{2}q}{4}\right) \times \right. \\ &\times \frac{\xi(q-1)}{4+\xi^{2}(q-1)} {}_{2}F_{1}\left(1,2+\frac{1}{q-1},\frac{1}{q-1}+\frac{5}{2},\frac{4}{4+\xi^{2}(q-1)}\right)\right] + \\ &+ \sin\left(\frac{\xi^{2}qx}{2}\right) \mathfrak{J}(\phi(\xi,x)) \bigg\}, \end{split}$$

$$(2.9)$$

onde:

$$\phi(x,\xi) = \operatorname{erf}\left(\frac{i\xi x - \xi}{2}\right).$$
(2.10)

Apesar da expressão analítica obtida ser consistente e precisa, é possível observar que ela possui uma função hipergeométrica e requer o cálculo das partes real e imaginária de uma função erro com argumento imaginário. Em [12] foi obtida uma expressão analítica assintótica de primeira ordem para $\psi_q(x,\xi)$ com o objetivo de se obter redução do custo computacional. A expressão de primeira ordem não contempla em sua formulação o termo ξ que está relacionado à temperatura. Visando obter expressões que incluam o ξ , em [13], foi proposta uma nova formulação analítica para $\psi_q(x,\xi)$, através de expansões assintóticas em Séries de Taylor para o termo $\frac{1}{1+y^2}$ e posteriormente realizando as integrações para os termos de n-ésima ordem. A função exponencial é par em torno de x = y, somente as potências pares de (x-y) geram termos não-nulos para a Série de Taylor, de acordo com a seguinte equação:

$$\Psi_{qn}(x,\xi) = \frac{\xi B_q a_{2n-2}}{8q\sqrt{\pi}} \int_{x-x_q}^{x+x_q} (y-x)^{2n-2} \exp_{2-q} \left[-\frac{\xi^2}{4} (x-y)^2 \right] dy,$$
(2.11)

é necessário calcular os termos N+ 1 da série e depois resolver as N integrais correspondentes para se obter a aproximação de enésima ordem, onde foi obtido até a expressão assintótica de terceira ordem. Fazendo n = 3 na equação acima temos:

$$\Psi_{q3}(x,\xi) = \frac{\xi B_q a_4}{8q\sqrt{\pi}} \int_{x-x_q}^{x+x_q} (x-y)^4 \exp_{2-q} \left[-\frac{\xi^2}{4} (x-y)^2 \right] dy,$$
(2.12)

4

onde:

$$a_4 = \frac{4}{1+x^2} \left[\frac{5x^4 - 10x^2 + 1}{(1+x^2)^4} - \frac{3x^2 - 1}{x_q^2 (1+x^2)^2} \right],$$
(2.13)

no trabalho foi considerado até a integral de quarta ordem, posteriormente os termos semelhantes de potências de ξ foram agrupados para se obter a expressão final para a expressão assintótica de terceira ordem para ψ_q , dada por:

$$\psi_q^{A3}(x,\xi) = \frac{1}{1+x^2} \left[1 + \frac{4}{(5q-3)} \frac{(3x^2-1)}{(1+x^2)^2} \frac{1}{\xi^2} + \frac{48}{(7q-5)(5q-3)} \frac{(5x^4-10x^2+1)}{(1+x^2)^4} \frac{1}{\xi^4} \right].$$
(2.14)

O objetivo desse trabalho é apresentar uma nova forma de calcular $J(\xi,\beta)$ considerando a Distribuição de Tsallis de modo a gerar uma expressão para $J_q(\xi,\beta)$ a partir de expressões analíticas supracitadas. Muitas vezes é conveniente acoplar dois ou mais métodos de cálculo para $\psi_q(x,\xi)$, de modo a acelerar os cálculos sem comprometer sua precisão. Uma ideia similar a [14] será utilizada neste trabalho, apresentando um método rápido e simples de se calcular $J(\xi,\beta)$ consiste em dividir o intervalo de integração utilizando o Método de Frobenius de acordo com a equação (2.9). $\psi_q(x,\xi)$ é utilizado sempre que $|x \xi \sqrt{q-1}| \le 6$ caso contrário é necessário utilizar a expressão assintótica $\psi_q^{A3}(x,\xi)$. O valor da integral unidimensional resultante foi obtida utilizando o método trapézio repetido. Definindo $\frac{6}{\xi\sqrt{q-1}}$ como o valor de interface, a função $J_q(\xi,\beta)$ foi calculada de acordo com a expressão:

$$J_q(\xi,\beta) = \int_0^{\frac{6}{\xi\sqrt{q-1}}} \frac{\psi_q(x,\xi)}{\psi_q(x,\xi) + \beta} dx + \int_{\frac{6}{\xi\sqrt{q-1}}}^{\infty} \frac{\psi_q^{A3}(x,\xi)}{\psi_q^{A3}(x,\xi) + \beta} dx,$$
(2.15)

utilizando-se de métodos numéricos para a solução das integrais.

3. RESULTADOS

As tabelas apresentam os resultados da integração numérica obtida com o método do Trapézio Repetido com 80 pontos, $0.1 \le \xi \le 1.0 \text{ com } \Delta \xi = 0.1 \text{ e } 0 \le j \le 31$. A Tab. 1 apresenta o resultado da função $J_q(\xi, \beta)$ para q = 1.1.

j	$\xi = 0.1$	$\xi = 0.2$	$\xi = 0.3$	$\xi = 0.4$	$\xi = 0.5$	$\xi = 0.6$	$\xi = 0.7$	$\xi = 0.8$	$\xi = 0.9$	$\xi = 1.0$
0	3197,35363	3187,48076	3184,95709	3184,11042	3183,72725	3183,52176	3183,39883	3183,31945	3183,26522	3183,22652
1	3194,71876	3175,18348	3170,19111	3168,51580	3167,75765	3167,35108	3167,10786	3166,95082	3166,84352	3166,76697
2	3189,48314	3151,22770	3141,45486	3138,17360	3136,68875	3135,89256	3135,41630	3135,10879	3134,89872	3134,74882
3	3179,14551	3105,69778	3086,94135	3080,63618	3077,78295	3076,25323	3075,33832	3074,74766	3074,34417	3074,05628
4	3158,98309	3022,97520	2988,22558	2976,51028	2971,20748	2968,36487	2966,66504	2965,56779	2964,81832	2964,28365
5	3120,55290	2883,70776	2822,94037	2802,31000	2792,95988	2787,94694	2784,94959	2783,01505	2781,69385	2780,75138
6	3050,22679	2674,56769	2576,79520	2543,07040	2527,71939	2519,47812	2514,54831	2511,36609	2509,19269	2507,64232
7	2929,68112	2402,68741	2260,89737	2210,42443	2187,19089	2174,66059	2167,14916	2162,29511	2158,97776	2156,61040
8	2740,97260	2097,18978	1913,81368	1845,06804	1812,68564	1795,02551	1784,37591	1777,47007	1772,74020	1769,35988
9	2474,74650	1789,97594	1579,12357	1494,35283	1452,87699	1429,77231	1415,66337	1406,44183	1400,09279	1395,53871
10	2134,50462	1497,29734	1281,92807	1188,10815	1139,79119	1111,97951	1094,62847	1083,12251	1075,11996	1069,33762
11	1735,91881	1219,40331	1024,89943	932,74641	882,37927	852,13437	832,68403	819,49817	810,17609	803,35660
12	1309,07499	951,77276	798,79125	719,70056	673,61883	644,57286	625,18546	611,65817	601,87701	594,59334
13	901,37895	696,94119	595,07031	537,19829	501,09699	477,10849	460,41069	448,35926	439,40226	432,58036
14	564,30602	469,74028	414,13199	379,16325	355,69079	339,18310	327,15585	318,14366	311,23333	305,83077
15	325,20982	289,63595	265,09691	248,04180	235,71037	226,51615	219,49126	214,01518	209,67396	206,18238
16	176,51138	165,23966	156,27891	149,49837	144,25924	140,13647	136,84171	134,17381	131,98886	130,18157
17	92,27638	89,13883	86,27751	83,97048	82,09326	80,55019	79,27004	78,19936	77,29746	76,53290
18	47,22501	46,44035	45,58730	44,86699	44,25824	43,74116	43,29968	42,92099	42,59481	42,31285
19	23,89546	23,72378	23,47123	23,24970	23,05681	22,88867	22,74182	22,61330	22,50063	22,40174
20	12,01995	11,99270	11,91430	11,84291	11,77905	11,72211	11,67140	11,62625	11,58608	11,55038
21	6,02822	6,02970	6,00306	5,97787	5,95477	5,93375	5,91470	5,89750	5,88200	5,86810
22	3,01869	3,02327	3,01317	3,00329	2,99403	2,98548	2,97762	2,97044	2,96392	2,95802
23	1,51050	1,51375	1,50952	1,50527	1,50122	1,49744	1,49394	1,49072	1,48778	1,48510
24	0,75554	0,75741	0,75549	0,75354	0,75167	0,74991	0,74826	0,74675	0,74535	0,74409
25	0,37784	0,37884	0,37793	0,37700	0,37610	0,37525	0,37446	0,37372	0,37304	0,37243
26	0,18894	0,18945	0,18901	0,18856	0,18812	0,18770	0,18731	0,18695	0,18661	0,18631
27	0,09447	0,09473	0,09452	0,09429	0,09407	0,09387	0,09367	0,09350	0,09333	0,09318
28	0,04724	0,04737	0,04726	0,04715	0,04704	0,04694	0,04684	0,04675	0,04667	0,04660
29	0,02362	0,02368	0,02363	0,02358	0,02352	0,02347	0,02342	0,02338	0,02334	0,02330
30	0,01181	0,01184	0,01182	0,01179	0,01176	0,01174	0,01171	0,01169	0,01167	0,01165
31	0,00590	0,00592	0,00591	0,00589	0,00588	0,00587	0,00586	0,00584	0,00583	0,00583

Tabela 1. Valores da Função $J_q(\xi,\beta)$ de Tsallis para q=1.1

j	$\xi = 0.1$	$\xi = 0.2$	$\xi = 0.3$	$\xi = 0.4$	$\xi = 0.5$	$\xi = 0.6$	$\xi = 0.7$	$\xi = 0.8$	$\xi = 0.9$	$\xi = 1.0$
0	3195,61551	3186,27735	3184,44420	3183,82819	3183,54877	3183,39868	3183,30879	3183,25071	3183,21101	3183,18267
1	3191,26819	3172,80363	3169,17636	3167,95740	3167,40452	3167,10756	3166,92974	3166,81483	3166,73629	3166,68023
2	3182,68254	3146,57203	3139,46784	3137,08014	3135,99729	3135,41575	3135,06754	3134,84255	3134,68876	3134,57900
3	3165,93067	3096,77428	3083,12500	3078,53564	3076,45473	3075,33743	3074,66850	3074,23633	3073,94096	3073,73015
4	3133,98337	3006,48786	2981,14174	2972,60869	2968,74035	2966,66390	2965,42103	2964,61820	2964,06957	2963,67803
5	3075,49632	2855,03584	2810,49187	2795,43870	2788,61261	2784,94937	2782,75728	2781,34162	2780,37436	2779,68415
6	2975,33453	2628,93314	2556,53182	2531,81531	2520,58334	2514,55326	2510,94492	2508,61491	2507,02309	2505,88733
7	2819,26905	2337,77031	2230,81896	2193,46475	2176,37088	2167,17081	2161,66003	2158,09994	2155,66721	2153,93123
8	2601,37508	2015,72983	1873,43725	1821,61669	1797,50982	1784,44055	1776,58371	1771,49782	1768,01823	1765,53324
9	2326,24263	1700,20954	1530,49009	1464,72150	1433,18854	1415,82526	1405,29615	1398,44489	1393,74179	1390,37533
10	2003,36558	1410,76024	1229,99022	1154,35605	1116,43315	1094,99120	1081,77570	1073,08606	1067,07885	1062,75757
11	1643,25165	1147,53762	976,59850	898,84254	857,61720	833,42386	818,13358	807,90447	800,74613	795,55086
12	1262,47701	902,63144	760,93619	690,60914	650,92036	626,54715	610,62448	599,71018	591,93337	586,21211
13	892,12981	672,29312	571,77528	517,02631	483,97734	462,61734	448,10344	437,84807	430,36706	424,76208
14	574,06864	464,01036	404,81308	369,15938	346,01679	330,19958	318,96628	310,74405	304,57487	299,84789
15	338,53145	293,32864	264,87141	245,87906	232,58199	222,94042	215,75946	210,29560	206,06411	202,73718
16	186,68249	170,83476	159,43524	151,08819	144,81010	139,98790	136,22207	133,24162	130,85645	128,92951
17	98,53130	93,46478	89,41644	86,22315	83,67158	81,61039	79,93086	78,55290	77,41613	76,47406
18	50,69354	49,10584	47,72246	46,56722	45,59893	44,78419	44,09673	43,51565	43,02398	42,60779
19	25,72212	25,20197	24,71199	24,28425	23,91219	23,58907	23,30897	23,06671	22,85775	22,67803
20	12,95734	12,77104	12,58284	12,41287	12,26088	12,12579	12,00640	11,90145	11,80969	11,72991
21	6,50306	6,42906	6,35005	6,27696	6,21037	6,15026	6,09646	6,04868	6,00655	5,96967
22	3,25766	3,22555	3,18993	3,15649	3,12566	3,09758	3,07226	3,04963	3,02958	3,01197
23	1,63037	1,61555	1,59872	1,58279	1,56801	1,55448	1,54223	1,53124	1,52148	1,51289
24	0,81557	0,80847	0,80031	0,79254	0,78531	0,77867	0,77265	0,76724	0,76243	0,75819
25	0,40788	0,40441	0,40039	0,39656	0,39298	0,38970	0,38671	0,38403	0,38164	0,37953
26	0,20397	0,20225	0,20025	0,19835	0,19657	0,19494	0,19345	0,19212	0,19093	0,18988
27	0,10199	0,10113	0,10014	0,09919	0,09831	0,09749	0,09675	0,09608	0,09549	0,09497
28	0,05100	0,05057	0,05007	0,04960	0,04916	0,04875	0,04838	0,04805	0,04775	0,04749
29	0,02550	0,02529	0,02504	0,02480	0,02458	0,02438	0,02419	0,02403	0,02388	0,02375
30	0,01275	0,01264	0,01252	0,01240	0,01229	0,01219	0,01210	0,01201	0,01194	0,01187
31	0,00637	0,00632	0,00626	0,00620	0,00615	0,00609	0,00605	0,00601	0,00597	0,00594

Tabela 2. Valores da Função $J_q(\xi,\beta)$ de Tsallis para q=1.5

4. CONCLUSÃO

Com base na função $J(\xi, \beta)$ foi proposto nesse trabalho uma aplicação utilizando as expressões analíticas para $\psi_q(x, \xi)$. Mostrou-se a viabilidade do cálculo para a função $J_q(\xi, \beta)$ através de integração numérica considerando expressões analíticas da Função de Alargamento Doppler de Tsallis. O método proposto nesse trabalho permite calcular os valores da tabela para qualquer valor de temperatura sem a necessidade de interpolações. O resultado obtido nesse trabalho, integrais de ressonância de Tsallis, corrobora com as conclusões obtidas nos trabalhos citados, onde é observado que é possível aplicar as expressões analíticas da Função de Alargamento Doppler considerando a Distribuição de Tsallis sem comprometer a precisão dos resultados, desde que eles estejam dentro dos limites de validade impostos. Para validar os resultados obtidos, é necessário se calcular os desvios percentuais entre os resultados desse trabalho e os resultados obtidos em [14], além de

comparar o eficiência computacional de ambos os trabalhos, além disso é interessante se implementar essas novas expressões analíticas em códigos nucleares como o NJOY para avaliar a precisão dos resultados e como essas expressões afetam o tempo computacional. Tais tarefas ficam como sugestão para futuros trabalhos.

AGRADECIMENTOS

Os agradecimentos são direcionados a FAPERJ e ao CNPq pelo fornecimento de recursos para a viabilização desse trabalho.

Referências

- [1] O. Shcherbakov e H. Harada, «Resonance self-shielding corrections for activation cross section measurements», *Journal of Nuclear Science and Technology*, v. 39, n. 5, pp. 548–553, 2002.
- [2] W. Stacey, Nuclear Reactors Physics. Wiley-Interscience, New York., 2001.
- [3] M. Reuss P. Coste-Delclaux, «Development of computational models used in France for neutron resonance absorption in light water lattices», *Progress in Nuclear Energy*, 2003.
- [4] L. Boltzmann, Über die Beziehung zwischen dem zweiten Hauptsatze des mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung, respective den Sätzen über das Wärmegleichgewicht. Kk Hofund Staatsdruckerei, 1877.
- [5] G. G. de Almeida, «Generalizações do Fenômeno de Alargamento Doppler», tese de dout., UFRJ Universidade Federal do Rio de Janeiro, 2019.
- [6] C. Tsallis, «Possible generalization of Boltzmann-Gibbs statistics», *Journal of Statistical Physics*, v. 52, n. 1–2, pp. 479–487, jul. de 1988, issn: 1572-9613. doi: 10.1007/bf01016429.
- B. M. Boghosian, «Thermodynamic description of the relaxation of two-dimensional turbulence using Tsallis statistics», *Physical Review E*, v. 53, n. 5, pp. 4754–4763, mai. de 1996, issn: 1095-3787. doi: 10.1103/physreve.53.4754.
- [8] C. Anteneodo e C. Tsallis, «Two-dimensional turbulence in pure-electron plasma: A nonextensive thermostatistical description», *Journal of Molecular Liquids*, v. 71, n. 2–3, pp. 255–267, abr. de 1997. doi: 10.1016/s0167-7322(97)00016-0.
- [9] P.-H. Chavanis, «Generalized thermodynamics and Fokker-Planck equations: Applications to stellar dynamics and two-dimensional turbulence», *Physical Review E*, v. 68, n. 3, 2003. doi: 10.1103/ physreve.68.036108.
- [10] A. J. Antunes, A. C. Gonçalves e A. S. Martinez, «Analytical solution for the Doppler Broadening Function using the Tsallis distribution», *Progress in Nuclear Energy*, v. 144, p. 104071, 2022. doi: 10.1016/j.pnucene.2021.104071.
- [11] A. J. M. Antunes, «Expressão Analítica da Função de Alargamento Doppler usando a Distribuição de Tsallis.», tese de dout., UFRJ Universidade Federal do Rio de Janeiro, 2022.
- [12] P. D. A. e. M. A. Z. A. J ANTUNES GUEDES G, «"Expansão assintótica de Funções de Alargamento Doppler deformadas utilizando o Método de Laplace"», Semana Nacional de Engenharia Nuclear e da Energia e Ciências das Radiações – VI SENCIR., 2022.
- [13] J. A. R. Cunha, G. Guedes, D. A. Palma e A. J. Antunes, «Asymptotic expressions for the Tsallis Doppler Broadening Function», *Annals of Nuclear Energy*, v. 206, p. 110613, out. de 2024. doi: 10. 1016/j.anucene.2024.110613.
- [14] D. A. P. Palma e A. S. Martinez, «A faster procedure for the calculation of the J(ξ , β) function», *Annals of Nuclear Energy*, v. 36, n. 10, pp. 1516–1520, out. de 2009. doi: 10.1016/j.anucene.2009. 07.019.